Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:48:39.743Z Has data issue: false hasContentIssue false

Infrared Measurement of Carrier Density, Lattice Temperature and Melt Depth During Nanosecond Pulsed Laser Annealing of Silicon and Germanium

Published online by Cambridge University Press:  22 February 2011

J. S. Preston
Affiliation:
Department of Physics and Erindale CollegeUniversity of Toronto Toronto, Ontario, Canada, M5S 1A7
H. M. van Driel
Affiliation:
Department of Physics and Erindale CollegeUniversity of Toronto Toronto, Ontario, Canada, M5S 1A7
J. E. Sipe
Affiliation:
Department of Physics and Erindale CollegeUniversity of Toronto Toronto, Ontario, Canada, M5S 1A7
Get access

Abstract

We have performed infrared reflectivity measurements using 5.3 and 10.6μm probes to determine the plasma density, lattice temperature and melting kinetics of silicon and germanium following excitation by 25 nanosecond, 0.53 and 1. 06μm pulses. Below the threshold of melting, the maximum plasma densities are approximately 1020 cm−3; for both materials; these values and the spatial and temporal evolution of the plasma are consistent with well known generaticn, diffusion and recombination processes. Above the threshold for melting we have taken advantage of the large skin depth at infrared wavelengths to determine the melt front kinetics for depths up to 1000 Å using a contactless technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Blinov, L. M., Vavilov, V. S. and Galkin, G. N., Fiz. Tekh. Poluprovodn. 1, 1351 (Soy. Phys. - Semiconductors 1, 1124 (1967));Google Scholar
1a.Bixnbaum, M. and Stocker, T. L., J. Appl. Phys. 39, 6032 (1968);Google Scholar
1b.Auston, D. H., Surko, C. M., Venkatesan, T. N. C., Slusher, R. E. and Golovchenko, J. A., App. Phys. Lett. 33, 437 (1978).Google Scholar
2.Nagata, I., Galagali, R. J., Horiguchi, S., Sakai, T. and Nakaya, T., J. Phys. D: Appl. Phys. 3, 1305 (1970);Google Scholar
2a.Liu, J. M., Kurz, H. and Bloembergen, N., Appl. Phys. Lett. 41, 643 (1982);Google Scholar
2b.von der Linde, D. and Fabricius, N., App. Phys. Lett. 41, 991 (1982).Google Scholar
3.Auston, D. H., McAfee, S., Shank, C. V., Ippen, E. P. and Teschke, O., Sol. St. Electron. 21, 147 (1978).Google Scholar
4.Hein, P. C., Gallant, M. I. and van Driel, H. M., Sol. St. commun. 39, 601 (1981);Google Scholar
4a.Gallant, M. I. and van Driel, H. M., Phys. Rev. B 26, 2133 (1982).Google Scholar
5.Bucksbaum, P. H. and Bokor, J. in Laser-solid Interactions and Transient Thermal Processing of Materials, ed. by Narayan, J., Brown, W. L. and Lemons, R. A., (Elsevier, New York, 1983), pp. 51.Google Scholar
6.Lax, B. and Mavroides, J. G., Phys. Rev. 100, 1650 (1955).Google Scholar
7.van Driel, H. M., App. Phys. Lett. (in press).Google Scholar
8.Glazov, V. N., Chinzheyskaya, S. N. and Glagoleva, N. N., Liquid Semiconductors (Plenum, New York, 1969).Google Scholar
9.Liu, J. M., Kurz, H. and Bloembergen, N., App. Phys. Lett. 41, 643 (1982);Google Scholar
9a.von der Linde, D. and Fabricius, N., App. Phys. Lett. 41, 991 (1982);Google Scholar
9b.Shank, C. V., Yen, R. and Hirlnimann, C., Phys. Rev. Lett. 50, 454 (1983).Google Scholar
10.Conwell, E. M., High Field Transport in Semiconductors, Solid State Physics 9, (1967).Google Scholar
11.Galvin, G. J., Thompson, M. O., Mayer, J. W., Peercy, P. S., Hanmond, R. B. and Paulter, N., Phys. Rev. B 27, 1079 (1983).Google Scholar