Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T20:45:14.967Z Has data issue: false hasContentIssue false

Inhibited SN Surface Segregation in Epitaxial SNxGE1-x Alloy Films Grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  21 February 2011

M.E. Taylor
Affiliation:
Laboratories of applied Physics California institute of Technology, Pasadena, CA 91125
G. He
Affiliation:
Laboratories of applied Physics California institute of Technology, Pasadena, CA 91125
C. Saipetch
Affiliation:
Laboratories of applied Physics California institute of Technology, Pasadena, CA 91125
H.A. Atwater
Affiliation:
Laboratories of applied Physics California institute of Technology, Pasadena, CA 91125
Thomas J. Watson
Affiliation:
Laboratories of applied Physics California institute of Technology, Pasadena, CA 91125
Get access

Abstract

Epitaxial and compositionally homogeneous SnxGe1-x alloy films have been grown on Si (001) by pulsed laser deposition using elemental Sn and Ge targets. these results demonstrate that pulsed laser deposition can be used to grow alloys by overcoming the strong tendency for Sn surface segregation seen in growth by other methods such as molecular beam epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 H.Atwater, A., He, G., and Saipetch, C., to be published in Mat. Res. Soc. Symp. Proc., 355, (1995).Google Scholar
2 Harwit, A., Pukite, P.R., Angilello, J. and Iyer, S.S., Thin Solid Films, 184, 395 (1990).Google Scholar
3 Piao, J., Beresford, R., Licata, T., Wang, W.I. and Homma, H., J. Vac. Sci. Technol. B, 8, 221 (1990).Google Scholar
4 Gossman, H.J., J. appl. Phys., 68, 2791 (1990).Google Scholar
5 Fitzgerald, E.A., Freeland, P.E., Asom, M.T., Lowe, W.P., Macharrie, R.A., Jr., Weir, B.E., Kortan, A.R., Thiel, F.A., Xie, Y.H., Sergent, A.M., Cooper, S.L., Thomas, G.A., and Kimerling, L.C., J. Elec. Mat., 20, 489 (1991).Google Scholar
6 Wegscheider, W., Olajos, J., Menczigar, U., Dondl, W. and Abstreiter, G., J. Cryst. Growth, 123, 75 (1992).Google Scholar
7 Shah, S.I., Greene, J.E., Abels, L.L., Yao, Q. and Raccah, P.M., J. Cryst. Growth, 83, 3 (1987).Google Scholar
8 Oguz, S., Paul, W., Deutsch, T.T., Tsaur, B.Y. and Murphy, D.V., Appl. Phys. Lett., 43, 848 (1983).Google Scholar
9 Chang, I.T.H., Cantor, B. and Cullis, A.G., J. Non-Cryst. Solids, 117-118, 263 (1990).Google Scholar
10 Lee, S.M., J. appl. Phys., 75, 1987 (1994).Google Scholar
11 Tsao, J.Y., Materials Fundamentals of Molecular Beam Epitaxy, Academic Press, inc., (1993).Google Scholar
12 Aziz, M.J., J. appl. Phys., 53, 1158 (1982).Google Scholar
13 Cheung, J.T. and Sankur, H., Laser ablation of Electronic Materials : Basic Mechanisms and applications, edited by Fogarassy, E. and Lazare, S., Elsevier Science Publishers, 325 (1992).Google Scholar
14 McCamy, J.W. and Lowndes, D.H., Appl. Phys. Lett., 63, 3008 (1993).Google Scholar
15 Capewell, D.L. and Goodwin, D.G., to be published in Mat Res. Soc., Symp. Proc, (this volume), (1995).Google Scholar