Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T06:37:39.305Z Has data issue: false hasContentIssue false

The Initial Stages of Silicide Epitaxy - Nucleation and Morphology

Published online by Cambridge University Press:  25 February 2011

R. J. Nemanich
Affiliation:
North Carolina State University, Departments of Physics and Materials Science and Engineering, Raleigh, NC 27695–8202
C. M. Doland
Affiliation:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
F. A. Ponce
Affiliation:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

The initial stages of epitaxial silicide formation are described in terms of the nucleation properties. The reaction process is divided into the stages of interdiffusion, nucleation, and growth and coalescence. The aspects of the nucleation from the interdiffused regions are described. Results are presented for Pd and Pt deposited on clean Si surfaces. The initial thickness where silicide compound formation is observed is related to he critical cluster size of the nucleation model. The epitaxial morphology can be strongly influenced by heterogeneous nucleation involving the substrate interface, and this effect is demonstrated by reaction with metal overlayers less than the critical thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R. T., Gibson, J. M. and Poate, J. M., Phys. Rev. Lett. 50, 429(1983).Google Scholar
2. Tung, R. T., Levi, A. F. J., Gibson, J. M., Ng, K. K. and Chantre, A., Mat. Res. Soc. Symp. Proc. 54, 457(1986).Google Scholar
3. Schmid, P. E., Liehr, M., LeGoues, F. K. and Ho, P. S., Mat Res. Soc. Symp. Proc. 54, 469(1986).Google Scholar
4. Chen, L. J., Cheng, H. C. and Lin, W. T., Mat Res. Soc. Symp. Proc 54, 245(1986).Google Scholar
5. Rossi, G., Surface Science Reports 128, in press.Google Scholar
6. Nemanich, R. J., Doland, C. M., Fulks, R. T., and Ponce, F. A., Mat. Res. Soc. Symp. Proc. 54, 255(1986).Google Scholar
7. Venables, J. A., Spiller, G.D. T., and Handbucken, M., Rep. Prog. Phys. 47, 399(1984).Google Scholar
8. Venables, J.A., J. Vac. Sci. Technol. B4, 870(1986).Google Scholar
9. Ludeke, R., J. Vac. Sci. Technol. B2, 400(1984).Google Scholar
10. Nemanich, R. J., and Doland, C. M., J. Vac. Sci. Technol. B3, 1142(1985)Google Scholar
11. Nemanich, R.J., Tsai, C.C., Stafford, B.L., Abelson, J. R., and Sigmon, T. W., Mat. Res. Soc. Symp. Proc. 25, 9(1984).Google Scholar
12. Kawarada, H., Ohdomari, I., and Horiuchi, S., Mat. Res. Soc. Symp. 25, 429(1984).Google Scholar
13. Zur, A., McGill, T.C., and M-Nicolet, A., J. Appl. Phys. 57, 600(1985).Google Scholar
14. Powder Diffraction File Search Manual, (International Center for Diffraction Data, Swarthmore, PA), Card No. 7–251.Google Scholar