Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-27T22:56:39.537Z Has data issue: false hasContentIssue false

In-situ Incorporation of Lithium and Nitrogen into CVD Diamond Thin Films

Published online by Cambridge University Press:  21 December 2012

M. Zamir Othman
Affiliation:
School of Chemistry, University of Bristol, Bristol, United Kingdom
Paul W. May
Affiliation:
School of Chemistry, University of Bristol, Bristol, United Kingdom
Neil A. Fox
Affiliation:
School of Chemistry, University of Bristol, Bristol, United Kingdom
Get access

Abstract

Experiments were performed to incorporate Li and N simultaneously into the diamond lattice during hot-filament chemical vapour deposition in an attempt to produce n-type semiconducting diamond with useful electronic characteristics. Microcrystalline diamond films were grown using a mixture of methane/ammonia/hydrogen gases with tantalum as the filament. The Li was added by placing crystals of lithium nitride (Li3N) on the substrate and allowing them to melt and then slowly diffuse into the film. SIMS depth profiles showed that this process produced high levels of Li and N (0.05% - 0.5%) situated in the same region within the diamond film. The crystallinity and morphology of diamond crystals produced were confirmed using laser Raman spectrometry and scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

May, P. W., Davey, M., Rosser, K. N. and Heard, P. J., Mater. Res. Soc. Symp. Proc., 1039, 1039–P1015-1001, (2007).Google Scholar
Baranauskas, V., Li, B. B., Peterlevitz, A., Tosin, M. C. and Durrant, S. F., J. Appl. Phys., 85, 74557458, (1999).10.1063/1.369378CrossRefGoogle Scholar
Koizumi, S., Teraji, T. and Kanda, H., Diamond and Related Materials, 9, 935940, (2000).10.1016/S0925-9635(00)00217-XCrossRefGoogle Scholar
Petherbridge, J. R., May, P. W., Fuge, G. M., Robertson, G. F., Rosser, K. N. and Ashfold, M. N. R., Journal of Applied Physics, 91, 36053613, (2002).10.1063/1.1448679CrossRefGoogle Scholar
O’Donnell, K. M., Martin, T. L., Fox, N. A. and Cherns, D., Mater. Res. Soc. Symp. Proc., 1282, (2011).10.1557/opl.2011.442CrossRefGoogle Scholar
O’Donnell, K. M., Martin, T. L., Fox, N. A. and Cherns, D., Phys. Rev. B, 82, 115303, (2010).10.1103/PhysRevB.82.115303CrossRefGoogle Scholar
Goss, J. P., Eyre, R. J. and Briddon, P. R., Phys. Status Solidi B-Basic Solid State Phys., 245, 16791700, (2008).10.1002/pssb.200744115CrossRefGoogle Scholar
Lombardi, E. B. and Mainwood, A., Diamond and Relat. Mater., 17, 13491352, (2008).10.1016/j.diamond.2007.12.015CrossRefGoogle Scholar
Zeisel, R., Nebel, C. E., Stutzmann, M., Sternschulte, H., Schreck, M. and Stritzker, B., physica status solidi (a), 181, 4550, (2000).10.1002/1521-396X(200009)181:1<45::AID-PSSA45>3.0.CO;2-23.0.CO;2-2>CrossRef3.0.CO;2-2>Google Scholar
Uzan-Saguy, C., Cytermann, C., Fizgeer, B., Richter, V., Brener, R. and Kalish, R., physica status solidi (a), 193, 508516, (2002).10.1002/1521-396X(200210)193:3<508::AID-PSSA508>3.0.CO;2-H3.0.CO;2-H>CrossRef3.0.CO;2-H>Google Scholar
Namba, A., Yamamoto, Y., Sumiya, H., Nishibayashi, Y. and Imai, T., United State Pat., US 2006/1077962 A1, (2006).Google Scholar
Sachdev, H., Diamond and Relat. Mater., 10, 13901397, (2001).10.1016/S0925-9635(00)00526-4CrossRefGoogle Scholar
Kaskhedikar, N. A. and Maier, J., Adv. Mater., 21, 26642680, (2009).10.1002/adma.200901079CrossRefGoogle Scholar