Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T13:45:46.686Z Has data issue: false hasContentIssue false

Integrated Silicon Infrared Microspectrometers

Published online by Cambridge University Press:  10 February 2011

S.-H. Kong
Affiliation:
Delft University of Technology, Faculty ITS, Dept. for Micro-electronics, Mekelweg 4, 2628 CD Delft, The Netherlands Phone +31 15 278 4707, Fax. +31 15 278 5755
G. de Graaf
Affiliation:
Delft University of Technology, Faculty ITS, Dept. for Micro-electronics, Mekelweg 4, 2628 CD Delft, The Netherlands Phone +31 15 278 4707, Fax. +31 15 278 5755
R.F. Wolffenbuttel
Affiliation:
Delft University of Technology, Faculty ITS, Dept. for Micro-electronics, Mekelweg 4, 2628 CD Delft, The Netherlands Phone +31 15 278 4707, Fax. +31 15 278 5755
Get access

Abstract

Design, fabrication and performance of a microspectrometer for operation in the infrared spectral range between 1 and 8 μm and fabricated in silicon are presented. The opto-electrical system is composed of two bonded silicon wafers, which have been subjected to microelectronic process compatible micromachining to enable co-integration of the optical components (an aluminum based grating, an optical path in crystalline silicon and an array of integrated polysilicon thermocouples) with readout circuits in silicon. The FWHM is smaller than 0.5 μm at λ= 5 μm. The performance is compared to alternatives and directions for improving the selectivity are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Stuart, B., Modern IR spectroscopy, Wiley and sons Ltd., 1996.Google Scholar
[2] Iordanov, V., Lubking, G., Ishihara, R., Wolffenbuttel, R.F., Sarro, P.M. and Vellekoop, M.J., Silicon thin-film UV filter for NADH analysis, Sensors and Actuators A (2002)161166.Google Scholar
[3] Rossberg, D., Silicon micromachined infrared sensor with tunable wavelength selectivity for application in infrared spectroscopy, Sensors and Actuators A 46-47 (1995)413416.Google Scholar
[4] Minas, G., Martins, J.S., Pereira, C., Lima, C., Wolffenbuttel, R.F. and Correia, J.H., Lab-on-a-chip for measuring uric acid in biological fluids., Proc. Eurosensors XVI, Prague. Chech Rep., 15-18 September 2002, pp. 6669.Google Scholar
[5] Rosema, A., Potential of chlorophyll fluorescence for remote sensing of canopy photosynthesis, Proc. OECD workshop on remote sensing for agriculture for the environment, Kiffisia, Greece, 1720 September 2002.Google Scholar
[6] Lindblom, P., Meinander, M. and Olsson, T., Spectroscopy with the MEGA spectrometer, a very high resolution grating spectrometer, Rev. Sci. Instrum., Vol. 61, 1990, pp.25462548.Google Scholar
[7] Wolffenbuttel, R.F., Silicon photodetectors with a selective spectral response, in: Sensors Update Vol. 9 Editors: Baltes, H., Hesse, J. and Korvink, J., Wiley-VCH 2001, pp. 69101.Google Scholar
[8] Goldman, D., White, P. and Anheier, N., Miniaturised spectrometer employing planar waveguides and grating couplers for chemical analysis, Appl. Optics, 29 pp.45834589, 1990 Google Scholar
[9] Mohr, J., Anderer, B. and Ehrfeld, W., fabrication of a planar grating spectrograph by deepetch lithography with synchrotron radiation, Sensors and Actuators A25-27 (1991) 571575.Google Scholar
[10] Manzardo, O., Herzig, H.P., Marxer, C.R. and Rooij, N.F.de, Miniaturized time-scanning Fourier transform spectrometer based on silicon technology, Optics letters 24, 1999, pp. 17051707.Google Scholar
[11] Yee, G.M., Maluf, N.I., Hing, P.A., Albin, M. and Kovacs, G.T.A., Miniature spectrometers for biochemical analysis, Sensors and Actuators A58 (1997) 6166.Google Scholar
[12] Hirabayashi, K., Tsuda, H. and Kurokawa, T., Narrow-band tunable wavelength selective filters for Fabry-Perot interferometers with a liquid crystal intercavity, IEEE Photon. Technology Letters, Vol. 3, 1991, pp. 213215.Google Scholar
[13] Holm-Kennedy, J.W., Tsang, K.W., Sze, W.W., Jiang, F., Yang, D., A novel monolithic chipintegrated color spectrometer: the distributed wavelength filter component, SPIE, Vol. 1527, 1991, pp. 322331.Google Scholar
[14] Kwa, T.A. and Wolffenbuttel, R.F., Integrated grating/detector array fabricated in silicon using micromachining techniques, Sensors and Actuators A31 (1992) 259266.Google Scholar
[15] Kwa, T.A., French, P.J., Wolffenbuttel, R.F., Sarro, P.M., Hellemans, L. and Snauwaert, J., Anisotropically etched silicon mirrors for optical sensor applications, J. Electrochem. Soc., Vol. 142, 1995, pp. 12261233.Google Scholar
[16] Wolffenbuttel, R.F. (editor), Silicon Sensors And Circuits: On-Chip Compatibility, Chapman & Hall, London, 1996.Google Scholar
[17] Kong, S.-H., Wijngaards, D.D.L., and Wolffenbuttel, R.F., Integrated microspectrometer based on a diffraction grating, Sensors and Actuators A92 (2001) 8895.Google Scholar
[18] Saleh, B. and Teich, M.C., Fundamentals of photonics, Wiley 1991.Google Scholar
[19] Vaughan, J.M., The Fabry-Perot interferometer: history, theory, practice and applications, Adam Hilger, 1989.Google Scholar
[20] Raley, N.F., Ciarlo, D.R., Koo, J.C., Beiriger, B., Trujillo, J., Yu, C., Loomis, G. and Chow, R., A Fabry-Perot microinterferometer for visible wavelengths, Proc. IEEE workshop on MEMS, Travemünde, Germany, Febr. 4-7 1992, pp. 170173.Google Scholar
[21] Tran, A.T.T.D., Lo, Y.H., Zhu, Z.H., Haronian, D. and Mozdy, E., Surface-micromachined Fabry-Perot tunable filter, IEEE Photonics Technology Letters, Vol. 8-3, 1996, pp. 393395.Google Scholar
[22] Zavracky, P.M., Denis, K.L., Xie, H.K., Webster, T. and Kelley, P., A micromachined scanning Fabry-Perot interferometer, Proc. SPIE-Micromachined devices and components IV, Santa Clara, USA, 1998, pp. 178187.Google Scholar
[23] Aratani, K., French, P.J., Sarro, P.M., Poenar, D.P. and Wolffenbuttel, R.F., Surface micromachined tunable interferometer array, Sensors and Actuators A 41-42(1994) 1723.Google Scholar
[24] Correia, J.H., Bartek, M. and Wolffenbuttel, R.F., Bulk micromachined tunable Fabry-Perot micro-interferometer for the visible spectral range, Sensors and Actuators A76 (1999) 191196.Google Scholar
[25] Correia, J.H., Bartek, M. and Wolffenbuttel, R.F., High-selectivity single-chip spectrometer in silicon for operation in the visible part of the spectrum, IEEE Tr. ED, Vol. 47, No. 3, 2000, pp. 553559.Google Scholar
[26] Jerman, J.H, Clift, D.J. and Mallinson, S.R., A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support, Sensors and Actuators A29 (1991) 151158.Google Scholar
[27] Correia, J.H., Graaf, G. de, Kong, S. H., Bartek, M. and Wolffenbuttel, R.F., Single-chip CMOS optical micro-interferometer, Sensors and Actuators A82(2000) 191197.Google Scholar
[28] Correia, J.H., Graaf, G. de, Bartek, M. and R.F.Wolffenbuttel, A CMOS optical microspectrometer with light-to-frequency converter, bus interface and stray-light compensation, IEEE Tr. IM, December 2001, pp. 15301537.Google Scholar
[29] Born, M. and Wolf, E., Principles of Optics, 5th Edn., Pergamon Press, New York, 1975.Google Scholar
[30] Ordal, M.A., Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared, Appl. Optics, Vol. 22, No. 7 (1983) 10991119.Google Scholar
[31] Macleod, H.A., Thin-film optical filters, Adam Hilger Ltd., 2nd Edn., 1986.Google Scholar
[32] Hicks, T.R., Raey, N.K. and Atherton, P.D., The application of capacitance micrometry to the control of Fabry-Perot etalons, Journal Phys. E, Sci. Instrum., Vol. 17, 1984, pp-4954.Google Scholar