Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T10:15:05.437Z Has data issue: false hasContentIssue false

The Investigation of the Charge Transport Properties of Ionic Liquids in Response to Step Voltages in Ionic Polymer Actuators

Published online by Cambridge University Press:  19 August 2014

Jun-Hong Lin*
Affiliation:
Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, Republic of China.
Get access

Abstract

Developing advanced ionic electroactive devices such as ionic actuators and supercapacitors requires the understanding of charge drifting and diffusion processes, which depends on the distances over which the ions travel. The charge dynamics of Aquivion membrane actuators with EMI-Tf ionic liquid are investigated over a broad film thickness (d) range. A time domain charge dynamic method based on Poisson-Nernst-Planck relation is employed to evaluate the charge transport behaviors in the actuators. It is found that for the initial charging process the double layer time τDL is linearly proportional to the film thickness (d). However, for the later charging process under a high applied voltage (>0.5V ) where the substantial electromechanical reaction occurs, the charge transport behavior does not follow the d2 dependence as predicted by the random walk diffusion model. For comparison the charge dynamics of BMI-PF6 ionic liquid films without polymer was also investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, W., Fadeev, A.G., Qi, B.H., Smela, E., Mattes, B.R., Ding, J., Spinks, G.M., Mazurkiewicz, J., Zhou, D.Z., Wallace, G.G., MacFarlane, D.R., Forsyth, S.A., Forsyth, M., Science, 297 (2002) 983987.10.1126/science.1072651CrossRefGoogle Scholar
McEwen, A.B., Ngo, H.L., LeCompte, K., Goldman, J.L., Journal of the Electrochemical Society, 146 (1999) 16871695.10.1149/1.1391827CrossRefGoogle Scholar
Ue, M., Takeda, M., Toriumi, A., Kominato, A., Hagiwara, R., Ito, Y., Journal of the Electrochemical Society, 150 (2003) A499A502.10.1149/1.1559069CrossRefGoogle Scholar
Beunis, F., Strubbe, F., Marescaux, M., Beeckman, J., Neyts, K., Verschueren, A.R.M., Physical Review E, 78 (2008) 011502–011501-011502-011515.10.1103/PhysRevE.78.011502CrossRefGoogle Scholar
Beunis, F., Strubbe, F., Marescaux, M., Neyts, K., Verschueren, A.R.M., Applied Physics Letters, 91 (2007) 182911–182911-182911-182913.10.1063/1.2805229CrossRefGoogle Scholar
Marescaux, M., Beunis, F., Strubbe, F., Verboven, B., Neyts, K., Physical Review E, 79 (2009) 011502–011501-011502-011504.10.1103/PhysRevE.79.011502CrossRefGoogle Scholar
Lin, J.H., Liu, Y., Zhang, Q.M., Polymer, 52 (2011) 540546.10.1016/j.polymer.2010.11.030CrossRefGoogle Scholar
Bazant, M.Z., Thornton, K., Ajdari, A., Physical Review E, 70 (2004) 021506–021501-021506-021524.10.1103/PhysRevE.70.021506CrossRefGoogle Scholar
Kilic, M.S., Bazant, M.Z., Ajdari, A., Physical Review E, 75 (2007) 021502–021501-021502-021516.10.1103/PhysRevE.75.021502CrossRefGoogle Scholar
Fukumoto, K., Yoshizawa, M., Ohno, H., Journal of the American Chemical Society, 127 (2005) 23982399.10.1021/ja043451iCrossRefGoogle Scholar
Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D., Green Chemistry, 3 (2001) 156164.10.1039/b103275pCrossRefGoogle Scholar
Tokuda, H., Hayamizu, K., Ishii, K., Hasan Susan, M. Abu Bin, Watanabe, M., Journal of Physical Chemistry B, 108 (2004) 1659316600.10.1021/jp047480rCrossRefGoogle Scholar
Liu, Y., Liu, S., Lin, J.H., Wang, D., Jain, V., Montazami, R., Heflin, J.R., Li, J., Madsen, L., Zhang, Q.M., Applied Physics Letters, 96 (2010) 223503–223501-223503-223503.10.1063/1.3432664CrossRefGoogle Scholar
Liu, S., Liu, W.J., Liu, Y., Lin, J.H., Zhou, X., Janik, M.J., Colby, R.H., Zhang, Q.M., Polymer International, 59 (2010) 321328.10.1002/pi.2771CrossRefGoogle Scholar
Bennett, M.D., Leo, D.J., Wilkes, G.L., Beyer, F.L., Pechar, T.W., Polymer, 47 (2006) 67826796.10.1016/j.polymer.2006.07.061CrossRefGoogle Scholar
Serghei, A., Tress, M., Sangoro, J.R., Kremer, F., Physical Review B, 80 (2009) 184301–184301-184301-184305.10.1103/PhysRevB.80.184301CrossRefGoogle Scholar
Krause, C., Sangoro, J.R., Iacob, C., Kremer, F., Journal of Physical Chemistry B, 114 (2010) 382386.10.1021/jp908519uCrossRefGoogle Scholar
Wakai, C., Oleinikova, A., Ott, M., Weingartner, H., Journal of Physical Chemistry B, 109 (2005) 1702817030.10.1021/jp053946+CrossRefGoogle Scholar
Strubbe, F., Verschueren, A.R.M., Schlangen, L.J.M., Beunis, F., Neyts, K., Journal of Colloid and Interface Science, 300 (2006) 396403.10.1016/j.jcis.2006.03.050CrossRefGoogle Scholar
Liu, S., Liu, Y., Cebeci, H., de Villoria, R.G., Lin, J.H., Wardle, B.L., Zhang, Q.M., Advanced Functional Materials, 20 (2010) 32663271.10.1002/adfm.201000570CrossRefGoogle Scholar
Liu, S., Montazami, R., Liu, Y., Jain, V., Lin, M.R., Heflin, J.R., Zhang, Q.M., Applied Physics Letters, 95 (2009) 023505–023501-023505-023503.10.1063/1.3179554CrossRefGoogle Scholar