Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:47:11.662Z Has data issue: false hasContentIssue false

Investigation of Thermoelectric Properties of P-Type GaN Thin Films

Published online by Cambridge University Press:  16 July 2015

Bahadir Kucukgok
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Babar Hussain
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Chuanle Zhou
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Ian T. Ferguson
Affiliation:
College of Engineering and Computing, Missouri University of Science and Technology, 305 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409, U.S.A
Na Lu
Affiliation:
Department of Engineering Technology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A
Get access

Abstract

GaN and its alloys are promising candidates for high temperature thermoelectric (TE) materials due to their high Seebeck coefficient and high thermal and mechanical stability. Moreover, these materials can overcome the toxicity concern of current Te-based TE materials, such as Bi2Te3 and PbTe. These materials have recently shown a higher Seebeck coefficient than that of SiGe in high temperature region because their large bandgap characteristic eliminates the bipolar conduction. In this study, we report the room temperature thermoelectric properties of p-type Mg doped GaN, grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate with various carrier concentrations. Undoped and n-type GaN are also incorporated with p-type GaN films to make comparison. The structural, optical, electrical, and thermal properties of the samples were examined by X-ray diffraction, photoluminescence, van der Pauw hall-effect, and thermal gradient methods, respectively. The Seebeck coefficient ranging from 710-900µV/K at room temperature of Mg: GaN were observed, which further indicated their potential TE applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Han, C.-G., Zhang, B.-P., Ge, Z.-H., Zhang, L.-J., Liu, Y.-C., J Mater Sci. 48, 40814087 (2013).CrossRefGoogle Scholar
Li, D., Sun, R.-R., Qin, X.-Y., Progress in Natural Science: Materials International, 21, 336340 (2011).CrossRefGoogle Scholar
Tan, G., Zhao, L.-D., Shi, F., Doak, J. W., Lo, S.-H., Sun, H., Wolverton, C., Dravid, V. P., Uher, C., and Kanatzidis, M. G., J. Am. Chem. Soc. 136, 70067017 (2014).CrossRefGoogle Scholar
Xu, L., Liu, Y., Chen, B., Zhao, C., Lu, K., Polym. Compos. 34, (2013).Google Scholar
Chen, Z., Han, Y.M., Zhou, M., Song, C.M., Huang, R.J., Zhou, Y., and Li, L.F., Journal of Electronic Materials, 43 (2014).Google Scholar
Hurwitz, E. N., Kucukgok, B., Melton, A. G., Liu, Z.Q., Lu, N., and Ferguson, I. T., MRS Proceedings, 1396 (2012).Google Scholar
Xiao, C., Li, K., Zhang, J., Tong, W., Liu, Y., Li, Z., Huang, P., Pan, B., Sud, H., and Xie, Y., Mater. Horiz. 1, 8186 (2014).CrossRefGoogle Scholar
Yelgel, O. C. and Srivastava, G. P., J. Appl. Phys. 113, 073709 (2013).CrossRefGoogle Scholar
Korkosz, R. J., Chasapis, T. C., Lo, S.-H., Doak, J. W., Kim, Y. J., Wu, C.-I., Hatzikraniotis, E., Hogan, T. P., Seidman, D. N., Wolverton, C., Dravid, V. P., and Kanatzidis, M. G., J. Am. Chem. Soc. 136, 32253237 (2014).CrossRefGoogle Scholar
Du, B., Saiga, Y., Kajisa, K., and Takabatake, T., Chem. Mater. 27, 18301836 (2015).CrossRefGoogle Scholar
Jost, M., Lingner, J., Letz, M., and Jakob, G., Semicond. Sci. Technol. 29, 124011 (2014).CrossRefGoogle Scholar
Lu, N. and Ferguson, I., Semicond. Sci. Technol. 28, 074023 (2013).CrossRefGoogle Scholar
Ong, K. P., Singh, D. J., and Wu, P., Physical Review B, 83, 115110 (2011).CrossRefGoogle Scholar
Jaworski, C. M., Nielsen, M. D., Wang, H., Girard, S. N., Cai, W., Porter, W. D., Kanatzidis, M. G., and Heremans, J. P., Physical Review B, 87, 045203 (2013).CrossRefGoogle Scholar
Tani, J.-I. and Kido, H., Jpn. J. Appl. Phys. 46, (2007).CrossRefGoogle Scholar
Heremans, J. P., Wiendlochaac, B., and Chamoire, A. M., Energy Environ. Sci. 5, 5510 (2012).CrossRefGoogle Scholar
Nakajima, A., Liu, P., Ogura, M., Makino, T., Nishizawa, S.-I., Yamasaki, S., Ohashi, H., Kakushima, K., and Iwa, H., Appl. Phys. Express, 6 , 091002 (2013).CrossRefGoogle Scholar
Kucukgok, B., Wang, B., Melton, A. G., Lu, N., and Ferguson, I. T., Phys. Status Solidi C, 11, 894897 (2014).CrossRefGoogle Scholar
Walle, C. G. V. D., SPIE 3283, (1998).Google Scholar
Yamaguchi, S., Iwamura, Y., Yamamoto, A., Appl. Phys. Lett. 82, (2003).Google Scholar