Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T13:46:38.378Z Has data issue: false hasContentIssue false

Investigations of Low-Temperature Epitaxy, Ion Damage, and Reactive-Ion Cleaning Utilizing Ion Beam Deposition

Published online by Cambridge University Press:  28 February 2011

B. R. Appleton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
T. S. Noggle
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
N. Herbots
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
Get access

Abstract

The technique of ion beam deposition (IBD) is utilized to investigate low-energy, ion-induced damage on Si and Ge; to study reactive ion cleaning of Si and Ge; to fabricate amorphous isotopic heterostructures; and to fabricate and study the low-temperature epitaxial deposition of 74Ge on Ge(100), 30Si on Si(100), and 74Ge on Si(100). The techniques of ion scattering/channeling and cross-sectional TEM are combined to characterize the deposits.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Physics Through the 1990's, Condensed Matter Physics: Physics Survey, National Academy Press, Washington, D.C., 1986.Google Scholar
2. Aston, F. W., Philos. Mag. 38/39 (1919-1925).Google Scholar
3. Dempster, A. J., Phys. Rev. 11, 316 (1918); 18, 415 (1921); 20, 631 (1922).CrossRefGoogle Scholar
4. Love, L. O., Science 182, 343 (1973).CrossRefGoogle Scholar
5. Wolter, A. R., p. 2A-1 in Proceedings 4th Microelectron Symposium (St. Louis, 1965), IEEE, New York, 1965.Google Scholar
6. Probyn, B. A., J. Phys. D 1, 457 (1968).CrossRefGoogle Scholar
7. Amano, J., Bryce, P., and Lawson, R.W.P., J. Vac. Sci. Technol. 13(2), 591 (1976).CrossRefGoogle Scholar
8. Amano, J. and Lawson, R.W.P., J. Vac. Sci. Technol. 15(1), 118 (1978).CrossRefGoogle Scholar
9. Amano, J., Thin Solid Films 92, 115 (1982).CrossRefGoogle Scholar
10. Yagi, K., Tamura, S., and Tokyama, T., Jpn. J. Appl. Phys. 16, 245 (1982).CrossRefGoogle Scholar
11. Tsukizoe, T., Nakai, T., and Ohmae, N., J. Appl. Phys. 42, 4770 (1977).CrossRefGoogle Scholar
12. Tokuyama, T., Yagi, K., Miyake, K., Tamura, M., Natsuaki, N., and Tachi, S., Nucl. Instrum. Methods 182/183, 241 (1981).CrossRefGoogle Scholar
13. Thomas, G. E., Beckers, L. J., Vrakking, J. J., and Koning, B. R. de, J. Cryst. Growth 56, 557 (1982).CrossRefGoogle Scholar
14. Miyake, K. and Tokuyama, T., Thin Solid Films 92, 123 (1982).CrossRefGoogle Scholar
15. Zalm, P. C. and Beckers, L. J., Appl. Phys. Lett. 41(2), 167 (1982).CrossRefGoogle Scholar
16. Yamada, I., Inokawa, H., and Takage, T., Nucl. Instrum. Methods B 6, 439 (1985).CrossRefGoogle Scholar
17. Herbots, N., Appleton, B. R., Noggle, T. S., Zuhr, R. A., and Pennycook, S. J., Nucl. Instrum. Methods B 13, 250 (1986).CrossRefGoogle Scholar
18. Herbots, N., Pennycook, S. J., Appleton, B. R., Noggle, T. S., and Zuhr, R. A., Proceedings Symposium A, 1985 Fall MRS Meeting, Boston, Massachusetts, December 1–4, 1985.Google Scholar
19. Appleton, B. R., Pennycook, S. J., Zuhr, R. A., Herbots, N., and Noggle, T. S., Nucl. Instrum. Methods B, 1987 (in press).Google Scholar
20. Herbots, N., Appleton, B. R., Noggle, T. S., Pennycook, S. J., Zuhr, R. A., and Zehner, D. M., p. 335 in Semiconductor-Based Heterostructures, edited by Green, M. L., Baglin, J.E.E., Chin, G. Y., Deckman, H. W., Mayo, W., and Narashinham, D, The Metallurgical Society, 1986.Google Scholar
21. Hagstrum, H. D., Surf. Sci. 54, 197 (1976).CrossRefGoogle Scholar
22. Itoh, T., Nakamura, T., Utomachi, M., and Sugiyama, T., Jpn. J. Appl. Phys. 16, 553 (1977).CrossRefGoogle Scholar
23. Takagi, T., Yamada, I., and Sasaki, A., Thin Solid Films 45, 569 (1975).CrossRefGoogle Scholar
24. Kuiper, A.E.T., Thomas, G. E., and Schanten, W. J., J. Cryst. Growth 51, 17 (1981).CrossRefGoogle Scholar
25. Paine, B. M. and Averbach, R. S., Nucl. Instrum. Methods B 7/8, 666 (1985).CrossRefGoogle Scholar
26. Appleton, B. R., p. 189 in Ion Implantation and Ion Beam Processing, edited by Williams, J. S. and Poate, J. M., Academic Press, New York, 1984.CrossRefGoogle Scholar
27. Greene, J. E., Crit. Rev. Solid State and Mater. Sci. 11(1), 47 (1983); also see J. E. Greene, “Recent Results on the Role of Low-Energy Ion/Surface Interactions During Crystal Growth from the Vapor Phase,” these proceedings.CrossRefGoogle Scholar
28. Bean, J. C., Science 230, 127 (1985) and references therein.CrossRefGoogle Scholar
29. Lima, C. A. Ferreira and Howie, A., Philos. Mag. 34, 1057 (1976); L. G. Salisbury, J. Microsc. 118, 75 (1979).CrossRefGoogle Scholar
30. Coburn, J. W., Winters, H. F., J. Appl. Phys. 50, 3189 (1979).CrossRefGoogle Scholar
31. Winters, H. F., Coburn, J. W., J. Vac. Sci. Technol. 3, 1376 (1985).CrossRefGoogle Scholar
32. Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
33. Suni, I., Goltz, G., Nicolet, M. A., and Lau, S. S., Thin Solid Films 93, 171 (1982).CrossRefGoogle Scholar
34. Jinno, K., Kinoshida, H., and Matsumato, Y., J. Electrochem. Soc. 125, 827 (1978).CrossRefGoogle Scholar
35. Magab, C. J. and Levinstein, H. F., J. Vac. Sci. Technol. 17, 721 (1980).CrossRefGoogle Scholar
36. Lee, Y. H. and Chen, M. M., J. Vac. Sci. Technol. B 4, 468 (1986).CrossRefGoogle Scholar
37. Beuk, J., Mannaerts, J. P., Ourmazo, A., Feldman, L. C., and Davidson, B. A., Appl. Phys. Lett. 49, 286 (1986).Google Scholar
38. Herbots, N., Appleton, B. R., Noggle, T. S., Zehner, D. M., and Zuhr, R. A., “Low-Temperature Growth of Thin SiO2 Films by Ion Beam Deposition (IBD),” these proceedings.Google Scholar