Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-15T09:57:16.748Z Has data issue: false hasContentIssue false

Ion Implantation Doping of InGaP, InGaAs, and InAlAs

Published online by Cambridge University Press:  26 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Kuo
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
E. Hailemarian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. P. Perley
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The activation of Si+ and Be+ ions implanted into InGaP, InGaAs or InAlAs grown by GSMBE and OMVPE was investigated as a function of ion dose and annealing temperature. Activation efficiencies close to 100% were obtained in InGaP and InGaAs for Be doses up to ∼1014 cm−2 and annealing temperatures of 700–850°C. Activation of Be was less efficient in InAlAs. By contrast, implanted Si displayed a saturation in active sheet electron densities at 1–3 × 1013 cm−2 and required higher annealing temperatures for optimum activation efficiency. High sheet resistance (≤108 μ/□) regions were created by O+ implantation into n+ InGaP or InAlAs, with hopping conduction dominating carrier transport in the bombarded material. For post-implant annealing temperatures above 750°C, the conductivity was restored to its initial value. No evidence was found for the creation of electrically active oxygen-related deep levels in either material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See for example HEMTs and HBTs: Devies, Fabrication and Circuits ed. Ali, F. and Gupta, A. (Artech, House, Boston, 1991).Google Scholar
[2] Davies, J. J., Marshall, A. C., Scott, M. D. and Griffiths, R. J. M., J. Cryst. Growth 93 782 (1988).Google Scholar
[3] Kobayashi, K., Hino, I., Gomyo, A., Kawata, S., and Suzuki, T., IEEE J. Quantum. Electron. 23, 704 (1987).Google Scholar
[4] Quigley, J. H., Hafich, M. J., Lee, H. Y., Stave, R. E., and Robinson, G., J. Vac. Sci. Technol. B7, 358 (1989).Google Scholar
[5] Pearton, S. J., Katz, A. and Geva, M., J. App. Phys. 68 2482 (1990).Google Scholar
[6] Katz, A., Abemathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 56 1028 (1990).Google Scholar
[7] Rao, M. V., Gulwadi, S. M., Thompson, P. E., Fathimulla, A. and Aina, O. A., J. Electron. Mater. 18 131 (1989).Google Scholar
[8] Donnelly, J. P., Nucl. Instr. Meth. 182/183 551 (1981).Google Scholar
[9] Walukiewicz, W., J. Vac. Sci., Technol B6 1357 (1988).Google Scholar
[10] Morris, N. and Sealy, B. J., Nucl. Instr. Meth. in Physics Research B42 665 (1989).Google Scholar
[11] Pearton, S. J., Hobson, W. S., Von Neida, A. E., Haegel, N. M., Jones, K. S., Morris, N. and Sealy, B. J., J. Appl. Phys. 67 2396 (1990).Google Scholar