Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T07:10:28.268Z Has data issue: false hasContentIssue false

Ion irradiation-induced welding of a carbon nanotube to a Si (100) surface

Published online by Cambridge University Press:  26 February 2011

Jani Kotakoski
Affiliation:
jkkoski@iki.fi, University of Helsinki, Accelerator Laboratory, P.O. Box 43 (Pietari Kalmin katu 2), Helsinki, N/A, FIN-00014, Finland, +358919150079, +358919150042
Kai Nordlund
Affiliation:
knordlun@acclab.helsinki.fi, University of Helsinki, Accelerator Laboratory, Finland
Get access

Abstract

Carbon nanotubes (CNTs) are one of the possible building blocks for electronic devices in the transition phase from traditional silicon-based microelectronics towards the few-nanometer regime. Remaining problems in integrating CNTs to the existing technology is the low reactivity of the CNT walls which leads to low conductance between CNTs and the other components. Because recent studies have shown that ion irradiation can be used to modify both the electrical and structural properties of CNTs, we propose that it could also be possible to use ion irradiation with low energies to enhance the conductance of these connections. We have used classical molecular dynamics simulations with empirically fitted potentials to examine this possibility by irradiating a single-walled carbon nanotube (SWCNT) on a silicon substrate at room temperature. The nanotube was deposited over a trench created to the silicon substrate so that the nanotube was partly suspended. Low irradiation doses and low energies (0.2 keV − 1.2 keV) were used to ensure that the irradiated CNT will not be destroyed. The simulations were carried out for silicon, carbon and neon ions. Our simulations indicate that ion irradiation will increase the number of covalent bonds between the CNT and the Si substrate. When the irradiation dose and energies are low, the damage caused to the SWCNT atomic network can be tolerable when compared to the improvement in the conductance of the contact regions. Furthermore, as the CNTs have high ability to heal the irradiation-induced damage, it is possible that the irradiation will not have a significant negative effect to the conductivity of the CNT in a system of this type.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nanotubes, Carbon, Synthesis, Structure, Properties and Applications, edited by Dresselhaus, M. S., Dresselhaus, G., and Avouris, P. (Springer, Berlin, 2001).Google Scholar
2 McEuen, P. L., Nature 393, 15 (1998).Google Scholar
3 Collins, P. G. and Avouries, P., Sci. Am., 62 (December, 2000).Google Scholar
4 Avouris, P., Chem. Phys. 281, 429 (2002).Google Scholar
5 McEuen, P. L. and Park, J.Y., MRS Bulletin, 272 (April, 2004).Google Scholar
6 de Heer, W. A., MRS Bulletin, 281 (April, 2004).Google Scholar
7 Mayer, J. W. and Lau, S. S., Electronic Materials Science For Integrated Circuits in Si and GaAs (MacMillan, New York, 1990).Google Scholar
8 Sze, S. M., Semiconductor Devices, Physics and technology (John Wiley & Sons, New York, 1985).Google Scholar
9 Li, J. and Banhart, F., Nano Letters 4, 1143 (2004).Google Scholar
10 Krasheninnikov, A. V., Nordlund, K., and Keinonen, J., Phys. Rev. B 66, 245403 (2002).Google Scholar
11 Terrones, M. et al. , Phys. Rev. Lett. 89, 075505 (2002).Google Scholar
12 Raghuveer, M. S., Ganesan, P. G., D'arcy-Gall, J., and Ramanath, G., Appl. Phys. Lett. 84, 4484 (2004).Google Scholar
13 Salonen, E., Krasheninnikov, A. V., and Nordlund, K., Nucl. Instr. Meth. Phys. Res. B 193, 603 (2002).Google Scholar
14 Krasheninnikov, A. V., Nordlund, K., Keinonen, J., and Banhart, F., Nucl. Instr. Meth. Phys. Res. B 202, 224 (2003).Google Scholar
15 Schittenhelm, H., Geohegan, D. B., and Jellison, G. E., Appl. Phys. Lett. 81, 2097 (2002).Google Scholar
16 Wei, B. Q., D'arcy-Gall, J., Ajayan, P. M., and Ramanath, G., Appl. Phys. Lett. 83, 3581 (2003).Google Scholar
17 Banhart, F., Li, J. X., and Krasheninnikov, A. V., Phys. Rev. B 71, 241408(R) (2005).Google Scholar
18 Banhart, F., Li, J., and Terrones, M., Small (2005), in press.Google Scholar
19 Ni, B. and Sinnott, S. B., Phys. Rev. B 61, R16343 (2000).Google Scholar
20 Kis, A. et al. , Nature Materials 3, 153 (2004).Google Scholar
21 Kotakoski, J., Pomoell, J. A. V., Krasheninnikov, A. V., and Nordlund, K., Nucl. Instr. Meth. Phys. Res. B. 228, 31 (2005).Google Scholar
22 Kotakoski, J. et al. , Phys. Rev. B 71, 205408 (2005).Google Scholar
23 Kotakoski, J., Krasheninnikov, A. V., and Nordlund, K., Nucl. Instr. Meth. Phys. Res. B. 240, 810 (2005).Google Scholar
24 Lee, R. S. et al. , Nature (London) 388, 255 (1997).Google Scholar
25 Rao, A. M. et al. , Nature (London) 388, 257 (1997).Google Scholar
26 Hebard, A. F. et al. , Nature 350, 600 (1991).Google Scholar
27 Holczer, K. et al. , Science 252, 1154 (1990).Google Scholar
28 Gómez-Navarro, C. et al. , Nature Materials 4, 534 (2005).Google Scholar
29 Krasheninnikov, A. V., Nordlund, K., and Keinonen, J., Phys. Rev. B 65, 165423 (2002).Google Scholar
30 Su, M. et al. , J. Phys. Chem. 104, 6505 (2000).Google Scholar
31 Orellana, W., Miwa, R. H., and Fazzio, A., Surf. Sci. 566–568, 728 (2004).Google Scholar
32 Krasheninnikov, A. V. et al. , Phys. Rev. B 63, 245405 (2001).Google Scholar
33 Beardmore, K. and Smith, R., Phil. Mag. A 74, 1439 (1996).Google Scholar
34 Erhart, P. and Albe, K., Phys. Rev. B 71, 035211 (2005).Google Scholar
35 Godwin, P. D., Kenny, S. D., and Smith, R., Surf. Sci. 529, 237 (2003).Google Scholar
36 Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).Google Scholar
37 Berendsen, H. J. C. et al. , J. Chem. Phys. 81, 3684 (1984).Google Scholar
38 Krasheninnikov, A. V. et al. , Phys. Rev. B 69, 073402 (2004).Google Scholar