Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T07:58:39.767Z Has data issue: false hasContentIssue false

Ion-Beam-Induced Plastic Deformation of Amorphous Materials

Published online by Cambridge University Press:  25 February 2011

S. Klaumünzer
Affiliation:
Hahn-Meitner-Institut, P.O.Box 390 128, D-1000 Berlin 39, F.R.G.
Hou Ming-Dong
Affiliation:
Hahn-Meitner-Institut, P.O.Box 390 128, D-1000 Berlin 39, F.R.G.
G. Schumacher
Affiliation:
Hahn-Meitner-Institut, P.O.Box 390 128, D-1000 Berlin 39, F.R.G.
Li Chang-Lin
Affiliation:
Hahn-Meitner-Institut, P.O.Box 390 128, D-1000 Berlin 39, F.R.G.
Get access

Abstract

At temperatures far below the glass transition temperature metallic glasses undergo plastic deformation during irradiation with a beam of fast heavy ions at energies at which electronic stopping is the dominant deceleration mechanism. This plastic deformation causes irreversible anisotropic changes in sample dimensions. Various (Fe,Co,Ni)∼8O(B,Si)∼20 glasses and the crystalline alloys Ni80Cr20 and Fe70Cr25A15 are examin? 9 for their susceptibility to this effect by irradiation below 50 K with 129Xe ions at 2.8 MeV/u. The data suggest that the excess free volume of an amorphous material is an essential parameter for the magnitude of ion-beam-induced plastic deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Egami, T., Maeda, K., and Vitek, V., Phil. Mag. 41A, 883 (1980).Google Scholar
2. Klauminzer, S. and Schumacher, G., Phys. Rev. Lett. 51, 1987 (1983).Google Scholar
3. Klaumunzer, S. et al., in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, Wirzburg, 3–7 September 1984, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985) p. 895.Google Scholar
4. Klaumsunzer, S., Chang-Lin, Li, and Schumacher, G., submitted to Appl. Phys. Lett.Google Scholar
5. Thompson, M.W., Defects and Radiation Damage in Metals (Cambridge, Univ. Press, Cambridge, England 1969) p. 332.Google Scholar
6. Zedler, E. and Lehmann, G., in Proc. 5. Int. Conf. on Rapidly Quenched Metals, see Ref. 3, p. 743.Google Scholar
7. Leonardsson, L., Thesis, Chalmers University, Gdteborg, Sweden, 1984, unpublished.Google Scholar
8. Malkinski, L. and Konczos, G., to be published in Acta Phisica Polonica.Google Scholar
9. Komatsu, T., Matusita, K., and Yokota, R., J. Non Cryst. Solids 69, 347 (1985).Google Scholar
10. Kopmann, G., Frommeyer, G., and Nicolai, H.P., Z. Metallkunde 74, 390 (1983).Google Scholar
11. Gordelik, P. and Sommer, F., in Proc. 5. Int. Conf. of Rapidly Quenched Metals, see Ref. 3, p. 623.Google Scholar
12. Jagielinski, T. and Egami, T., J. Appl. Phys. 55, 1811 (1984).Google Scholar
13. Zedler, E. and Lehmann, G., phys. stat. sol. a81, 445 (1984).Google Scholar
14. Gerling, R. and Wagner, R., Scr. Met. 16, 963 (1982).Google Scholar
15. Toloui, B., Kursumovic, A., and tahn, R.W., Scr. Met. 19, 947 (1985).Google Scholar
16. Audouard, A. et al., Europhysics Letters 3, 327 (1987).Google Scholar
17. Klaunminzer, S., Hou, Ming-dong, and Schumacher, G., Phys. Rev. Lett. 57, 850 (1986).Google Scholar
18. Hou, Ming-dong, Klaumunzer, S., and Schumacher, G., NucI. Inst. a. Meth. B19/20, 16 (1987).Google Scholar
19. Spaepen, F., Tsao, S.S., and Wu, T.W., in Amorphous Metals and Semiconductors, eds. Haasen, P. and Jaffee, R.I. (Pergamon Press, Oxford, 1986) p. 365.Google Scholar
20. Argon, A.S. and Deng, D., in Amorphous Metals and Semiconductors, eds. Haasen, P. and Jaffee, R.I. (Pergamon Press, Oxford, 1986) p. 379.Google Scholar
21. Vitek, V., Chen, S.P., and Egami, T., in Amorphous Metals and Semiconductors, eds. Haasen, P. and Jaffee, R.I. (Pergamon Press, Oxford, 1986) p. 398.Google Scholar