Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T17:31:04.724Z Has data issue: false hasContentIssue false

Is the Rigid-Band Model Applicable in Lithium Intercalation Compounds?

Published online by Cambridge University Press:  25 February 2011

C. Julien
Affiliation:
Laboratoire de Physique des Solides, associé auCNRS Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cédex 05, France
M. Balkanski
Affiliation:
Laboratoire de Physique des Solides, associé auCNRS Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cédex 05, France
Get access

Abstract

Numerous layered compounds are interesting materials in which lithium intercalation occurs primarily without destruction of the host lattice. In many cases a rigid-band model is a useful first approximation for describing the changes in electronic properties of the host material with intercalation. This paper presents some recent experimental results obtained on transition-metal chalcogenide compounds and on transition-metal oxides as well. We shall observe, nevertheless, that the rigid-band model is not applicable to all of the intercalated materials. The applicability of the rigid-band model may be used as a test for the most desirable properties of a good intercalation material. This needs to be more extensively documented for their possible applications as insertion electrodes in solid state batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sellmyer, D.J., in Solid State Physics vol. 33, edited by Ehrenreich, H., Seitz, F. and Turnbull, D. (Academic Press, New-York, 1978), p. 83.Google Scholar
2. Jones, H., Proc. R. Soc. London Ser. A 144, 225 (1934).Google Scholar
3. Friedel, J., Adv. Phys. 3, 446, (1954).Google Scholar
4. Liang, W.Y., Mater. Sci. Eng. B 3, 139, (1989).Google Scholar
5. Doni, E. and Girlanda, R., in Electronic Structure and Electronic Transitions in Layered Materials, edited by Grasso, V. (Riedel, Dortrecht, 1986), p. 1.Google Scholar
6. Klipstein, P.C., Pereira, C.M. and Friend, R.H., in Physics and Chemistry of Electrons and Ions in Condensed Matter NATO-ASI Series, Ser. C 130, edited by Acrivos, J.V., Mott, N.F. and Yoffe, A.D. (Reidel, Dortrecht, 1984), p. 437.Google Scholar
7. Klipstein, P.C. and Friend, R.H., J. Phys. C 20, 4169, (1987).Google Scholar
8. Julien, C., Samaras, I., Gorochov, O. and Ghorayeb, A.M., Phys. Rev. B 45, 13390, (1992).Google Scholar
9. Ghorayeb, A.M. and Friend, R.H., J. Phys. C 20, 4181, (1987).Google Scholar
10. Beal, A.R. and Nulsen, S., Phil. Mag. B 43, 965, (1981).Google Scholar
11. Isomaki, H., Boehm, J. von and Krusius, P., J. Phys. C 20, 3239, (1979).Google Scholar
12. Julien, C., Ruvalds, J., Virosztek, A. and Gorochov, O., Solid State Commun. 79, 875, (1991).Google Scholar
13. Virosztek, A. and Ruvalds, J., Phys. Rev. B 42, 4064, (1990).Google Scholar
14. Scholz, G.A. and Frindt, R.F., Can. J. Phys. 61, 965, (1983).Google Scholar
15. Ghorayeb, A.M., Liang, W.Y. and Yoffe, A.D., in Intercalation in Layered Compounds NATO-ASI Series, Ser. B 148, edited by Dresselhaus, M.S. (Plenum, New-York, 1986), p. 135.Google Scholar
16. Liang, W.Y., in Intercalation in Layered Compounds NATO-ASI Series, Ser. B 148, edited by Dresselhaus, M.S. (Plenum, New-York, 1986), p. 31.Google Scholar
17. Py, M.A. and Haering, R.R., Can. J. Phys. 61, 76, (1983).Google Scholar
18. Julien, C., Hatzikraniotis, E., Paraskevopoulos, K.M., Chevy, A. and Balkanski, M., Solid State Ionics 18–19, 859, (1986).Google Scholar
19. Julien, C., Jouanne, M., Burret, P.A. and Balkanski, M., Mater. Sci. Eng. B 3, 39, (1989).Google Scholar
20. Burret, P.A., Jouanne, M. and Julien, C., Z. Phys. B - Condensed Matter 76, 451, (1989).Google Scholar
21. Doni, E., Girlanda, R., Grasso, V., Bolzorotti, A. and Piacentini, M., Nuovo Cimento B 51, 154, (1979).Google Scholar
22. Costa, P. Gomes da, Balkanski, M. and Wallis, R.F., Phys. Rev. B 43, 7066, (1991).Google Scholar
23. Levy-Clement, C., Rioux, J., Dahn, J.R. and McKinnon, W.R., Mat. Res. Bull. 19, 1629 (1984).Google Scholar
24. Baumard, J.F. and Gervais, F., Phys. Rev. B 15, 2316, (1977).Google Scholar
25. Lelidis, I., Siapkas, D., Julien, C. and Balkanski, M., Mater. Sci. Eng. B 3, 133, (1989).Google Scholar
26. Goodenough, J.B., in Solid State Microbatteries NATO-ASI Series, Ser. B 217, edited by Akridge, J.R. and Balkanski, M. (Plenum, New-York, 1990), p. 213.Google Scholar
27. Crouch-Baker, S. and Dickens, P.G., Solid State Ionics 32/33, 219, (1989).Google Scholar
28. Murphy, D.W., Christian, P.A., Salvo, F.J. Di and Carides, J.N., J. Electrochem. Soc. 126, 497, (1979).Google Scholar
29. West, K., Zachau-Christiansen, B. and Jacobsen, T., Electrochim. Acta 28, 1829, (1983).Google Scholar
30. Julien, C. and Nazri, G.A., Solid State Ionics (to be published).Google Scholar