Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T07:38:52.463Z Has data issue: false hasContentIssue false

Large Thermoelectric Voltage in Point Contacts of Ni Ferromagnetic Metals

Published online by Cambridge University Press:  08 March 2011

Kenji Kondo
Affiliation:
Laboratory of Quantum Electronics, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
Hideo Kaiju
Affiliation:
Laboratory of Quantum Electronics, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan. PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.
Akira Ishibashi
Affiliation:
Laboratory of Quantum Electronics, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
Get access

Abstract

Recently, we have proposed a spin quantum cross structure (SQCS) device toward the realization of novel spintronics devices. In this paper, we have investigated thermoelectric effects in point contacts (PCs) of Ni ferromagnetic metals using SQCS devices, theoretically and experimentally. The calculated results show that the thermoelectric voltage Vq changes from 0.48 mV to 2.12 mV with the temperature difference of PCs increasing from 10 K to 50 K. Also, the magnitude of the theoretical thermoelectric voltage agrees very well with that of the experimental result. PCs of SQCS devices with Ni electrodes can serve as spin dependent thermobatteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oshima, H. and Miyano, K., Appl. Phys. Lett. 73, 2203 (1998).Google Scholar
2. Garcia, N., Munoz, M., and Zhao, Y.-W., Phys. Rev. Lett. 82, 2923 (1999).Google Scholar
3. Kondo, K. and Ishibashi, A., Jpn. J. Appl. Phys. 45, 9137 (2006).Google Scholar
4. Kaiju, H., Kondo, K., and Ishibashi, A., Mater.Res.Soc.Symp.Proc. 961, O5.5.1 (2007).Google Scholar
5. Kondo, K., Kaiju, H., and Ishibashi, A., Mater.Res.Soc.Symp.Proc. 1067, B03–01 (2008).Google Scholar
6. Kondo, K., Kaiju, H., and Ishibashi, A., J. Appl. Phys. 105, 07D522 (2009).Google Scholar
7. Stearns, M. B., Magn, J.. Magn. Mater. 5, 167 (1977).Google Scholar
8. Wang, C. S. and Callaway, J., Phys. Rev. B 15, 298 (1977).Google Scholar
9. Eberhardt, W. and Plummer, E. W., Phys. Rev. B 21, 3245 (1980).Google Scholar
10. van Houten, H., Molenkamp, L. W., Beenakker, C. W. J., and Foxon, C. T., Semicond. Sci. Technol. 7, B215 (1992).Google Scholar