Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T05:08:32.526Z Has data issue: false hasContentIssue false

Latest developments in Blue-Violet Laser Diodes grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

V. Bousquet
Affiliation:
Sharp Laboratories of Europe, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GB, United Kingdom
M. Kauer
Affiliation:
Sharp Laboratories of Europe, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GB, United Kingdom
K. Johnson
Affiliation:
Sharp Laboratories of Europe, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GB, United Kingdom
C. Zellweger
Affiliation:
Sharp Laboratories of Europe, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GB, United Kingdom
S.E. Hooper
Affiliation:
Sharp Laboratories of Europe, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GB, United Kingdom
J. Heffernan
Affiliation:
Sharp Laboratories of Europe, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GB, United Kingdom
Get access

Abstract

We report on recent results obtained for InGaN multiple quantum well laser diodes grown by ammonia based Molecular Beam Epitaxy. The laser diodes were grown on freestanding GaN substrates and operated at room temperature under pulsed current injection conditions. For devices with improved p-type doping a threshold current density of 6.7kA.cm−2 was measured for a current pulse duration of 200ns and an operating temperature of 3.9°C. A duty cycle up to 50% with a pulsed injection current duration of 500μs was also achieved at 3.9°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, S., Nagahama, S., Iwasa, N., Yamada, T., Jap. J. Appl. Phy. 35, L74L76 (1996).Google Scholar
2. Hooper, S.E., Kauer, M., Bousquet, V., Johnson, K., Barnes, J.M., J, Heffernan, Elect. Lett. 40, 33 (2004).Google Scholar
3. Skierbiszewski, C, Wasilewski, Z.R., Siekacz, M., Feduniewicz, A., Perlin, P., Wisniewski, P., Leszczynski, M., Grzegory, I., Suski, T. and Porowski, S., presented at the Int. MBE Conf. 2004, Edinburgh U.K. Google Scholar
4. Johnson, K., Bousquet, V., Hooper, S.E.. Kauer, M., Zellweger, C. and Heffernan, J., Elect. Lett. 40, 1297 (2004).Google Scholar
5. Waltereit, P., Sato, H., Poblenz, C., Green, D., Brown, J., Mc Laurin, M., Katona, T., DenBaars, S., Speck, J., Liang, J-H., Kato, M., Tamura, H., Omori, S. and Funaoka, C.. Appl. Phys. Lett. 84, 27482780 (2004).Google Scholar
6. Grandjean, N., Massies, J., Dalmasso, S. and Vennegues, P. Appl. Phys. Lett. 74, 3616 (1999).Google Scholar
7. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
8. Grandjean, N., Massies, J., leroux, M. and Lorenzini, P., Appl. Phys. Lett. 72, 82 (1998).Google Scholar
9. Tagaki, S. Acta. Cryst. 15, 1311 (1962).Google Scholar
10. Taupin, D. Bull. Soc. Fr. Mineral. Cristallogr. 87, 469 (1964).Google Scholar
11. Heffernan, J., Kauer, M., Hooper, S.E., Bousquet, V. and Johnson, K., Phys. Stat. Sol. (a) 201, 2688 (2004).Google Scholar
12. Nagahama, S., Appl. Phys. Lett. 79, 1948 (2001).Google Scholar
13. Li, J., Oder, T.N., Nakarmi, M. L., Lin, J. Y., and Jiang, H.X., Appl. Phys. Lett. 80, 1210 (2002).Google Scholar