Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Allahyarov, Elshad Löwen, Hartmut and Zhu, Lei 2016. Dipole correlation effects on the local field and the effective dielectric constant in composite dielectrics containing high-k inclusions. Phys. Chem. Chem. Phys., Vol. 18, Issue. 28, p. 19103.


    Amin, Amal Ahmed, Eman H. Sabaa, Magdy W. Ayoub, Magdy M. H. and Battisha, Inas K. 2016. Preparation and evaluation of hyperbranched p-chloromethyl styrene polymers/montmorillonite clay nanocomposites as dielectric materials. Polymer Bulletin, Vol. 73, Issue. 1, p. 147.


    ×
  • MRS Proceedings, Volume 1312
  • January 2011, mrsf10-1312-ii02-09

Length scales of interactions in magnetic, dielectric, and mechanical nanocomposites

  • R. Skomski (a1), B. Balamurugan (a1), E. Schubert (a1), A. Enders (a1) and D. J. Sellmyer (a1)
  • DOI: http://dx.doi.org/10.1557/opl.2011.109
  • Published online: 01 May 2011
Abstract
ABSTRACT

It is investigated how figures of merits of nanocomposites are affected by structural and interaction length scales. Aside from macroscopic effects without characteristic lengths scales and atomic-scale quantum-mechanical interactions there are nanoscale interactions that reflect a competition between different energy contributions. We consider three systems, namely dielectric media, carbon-black reinforced rubbers and magnetic composites. In all cases, it is relatively easy to determine effective materials constants, which do not involve specific length scales. Nucleation and breakdown phenomena tend to occur on a nanoscale and yield a logarithmic dependence of figures of merit on the macroscopic system size. Essential system-specific differences arise because figures of merits are generally nonlinear energy integrals. Furthermore, different physical interactions yield different length scales. For example, the interaction in magnetic hard-soft composites reflects the competition between relativistic anisotropy and nonrelativistic exchange interactions, but such hierarchies of interactions are more difficult to establish in mechanical polymer composites and dielectrics.

Copyright
Corresponding author
*Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3]C. Verdier , J. Theor. Med. 5 (2003) 67.

[5]A. Chipara , D. Hul , J. Sankar , D. Leslie-Pelecky , A. Bender , L. Yue , R. Skomski , and D. J. Sellmyer , Composites B: Engineering 35 (2004) 235.

[6]M. Chipara , R. Skomski , D. J. Sellmyer , Mater. Lett. 61 (2007) 2412.

[7]N. Ali , M. Chipara , S. Balascuta , R. Skomski , and D. J. Sellmyer , J. Nanosci. Nanotechnol. 9 (2009) 4437.

[8]J. C. M. Garnett , Philos. Trans. R. Soc. (London) A 203 (1904) 385.

[9]R. Skomski and J. M. D. Coey , Phys. Rev. B 48 (1993) 15812.

[10]Z. Hashin and S. Shtrikman , J. Appl. Phys. 33 (1962) 3125.

[12]J. M. Dewey , J. Appl. Phys. 18 (1947) 578.

[13]D. Schmidt , A. C. Kjerstad , T. Hofmann , R. Skomski , E. Schubert , and M. Schubert , J. Appl. Phys. 105 (2009) 113508.

[16]D. Polder and J. H. van Santen , Physica 12 (1946) 257.

[17]K. K. Kärkkäinen , A. H. Sihvola , and K. I. Nikoskinen , IEEE Trans. Geosci. and Remote Sensing 38 (2000) 1303.

[18]B. Velický , S. Kirkpatrick , and H. Ehrenreich , Phys. Rev. 175 (1968) 747 .

[19]S. Kirkpatrick , Phys. Rev. Lett. 27 (1971) 1722.

[21]W. T. Doyle , J. Appl. Phys. 85 (1999) 2323.

[23]R. Skomski , Simple Models of Magnetism, University Press, Oxford (2008).

[24]Z. Hashin , J. Appl. Mech. 29 (1962) 143.

[25]J. Y. Li , L. Zhang , and S. Ducharme , Appl. Phys. Lett. 90 (2007) 132901.

[26]O. Levy and D. Stroud , Phys. Rev. B 56 (1997) 8035.

[28]P. Banerjee , I. Perez , L. Henn-Lecordier , S. B. Lee , and G. W. Rubloff , Nature Nanotechnology 4 (2009) 292.

[29]A. Lakhtakia , B. Michel , and W. S. Weiglhofer , J. Phys. D: Appl. Phys. 30 (1997) 230.

[30]J. A. Osborn , Phys. Rev. 67 (1945) 351.

[32]T. S. Chow , Mesoscopic Physics of Complex Materials, Springer, Berlin2000.

[35]P. M. Duxbury , P. D. Beale , H. Bak and P. A. Schroedert , J. Phys. D: 23 (1990) 1546.

[36]Zh.-M. Dang , Y.-H. Lin , and C.-W. Nan , Adv. Mater. 15 (2003) 1625.

[37]J.-H. Kim , Y.-W. Lee , M. G. Kim , A. Souchkov , J. S. Lee , H. D. Drew , S.-J. Oh , C. W. Nan , and E. J. Choi , Phys. Rev. B 70 (2004) 172106.

[39]H. E. Alper and R. M. Levy , J. Phys. Chem. 94 (1990) 8401.

[41]R. Coehoorn , D.B. de Mooij , and C. de Waard , J. Magn. Magn. Mater. 80 (1989) 101.

[42]R. Skomski , H.-P. Oepen , and J. Kirschner , Phys. Rev. B 58 (1998) 3223.

[43]R. Skomski and D. J. Sellmyer , J. Appl. Phys. 87 (2000) 4756.

[44]A. Botti , W. Pyckhout-Hintzena , D. Richter , V. Urban , and E. Straube J. Chem. Phys. 124, 174908 (2006).

[45]E. Straube , V. Urban , W. Pyckhout-Hintzen , D. Richter , and C. J. Glinka , Phys. Rev. Lett. 74, 4464 (1995).

[46]G. F. Dionne , J. F. Fitzgerald , and R. C. Aucoin , J. Appl. Phys. (1976) 1708.

[48]J. Y. Li , Phys. Rev. Lett. 90 (2003) 217601.

[49]R. D. Mindlin , International Journal of Solids and Structures 4 (1968) 637.

[50]A. Askar , P. C. Lee , and A. S. Cakmak , Phys. Rev. B 1-3537 (1970) 3525.

[51]R. Skomski , A. Kashyap , and A. Enders , J. Appl. Phys., in press (2011).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: