Skip to main content
×
Home
    • Aa
    • Aa

Length scales of interactions in magnetic, dielectric, and mechanical nanocomposites

  • R. Skomski (a1), B. Balamurugan (a1), E. Schubert (a1), A. Enders (a1) and D. J. Sellmyer (a1)...
Abstract
ABSTRACT

It is investigated how figures of merits of nanocomposites are affected by structural and interaction length scales. Aside from macroscopic effects without characteristic lengths scales and atomic-scale quantum-mechanical interactions there are nanoscale interactions that reflect a competition between different energy contributions. We consider three systems, namely dielectric media, carbon-black reinforced rubbers and magnetic composites. In all cases, it is relatively easy to determine effective materials constants, which do not involve specific length scales. Nucleation and breakdown phenomena tend to occur on a nanoscale and yield a logarithmic dependence of figures of merit on the macroscopic system size. Essential system-specific differences arise because figures of merits are generally nonlinear energy integrals. Furthermore, different physical interactions yield different length scales. For example, the interaction in magnetic hard-soft composites reflects the competition between relativistic anisotropy and nonrelativistic exchange interactions, but such hierarchies of interactions are more difficult to establish in mechanical polymer composites and dielectrics.

Copyright
Corresponding author
*Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3] C. Verdier , J. Theor. Med. 5 (2003) 67.

[5] A. Chipara , D. Hul , J. Sankar , D. Leslie-Pelecky , A. Bender , L. Yue , R. Skomski , and D. J. Sellmyer , Composites B: Engineering 35 (2004) 235.

[6] M. Chipara , R. Skomski , D. J. Sellmyer , Mater. Lett. 61 (2007) 2412.

[7] N. Ali , M. Chipara , S. Balascuta , R. Skomski , and D. J. Sellmyer , J. Nanosci. Nanotechnol. 9 (2009) 4437.

[8] J. C. M. Garnett , Philos. Trans. R. Soc. (London) A 203 (1904) 385.

[9] R. Skomski and J. M. D. Coey , Phys. Rev. B 48 (1993) 15812.

[10] Z. Hashin and S. Shtrikman , J. Appl. Phys. 33 (1962) 3125.

[12] J. M. Dewey , J. Appl. Phys. 18 (1947) 578.

[13] D. Schmidt , A. C. Kjerstad , T. Hofmann , R. Skomski , E. Schubert , and M. Schubert , J. Appl. Phys. 105 (2009) 113508.

[16] D. Polder and J. H. van Santen , Physica 12 (1946) 257.

[17] K. K. Kärkkäinen , A. H. Sihvola , and K. I. Nikoskinen , IEEE Trans. Geosci. and Remote Sensing 38 (2000) 1303.

[18] B. Velický , S. Kirkpatrick , and H. Ehrenreich , Phys. Rev. 175 (1968) 747 .

[19] S. Kirkpatrick , Phys. Rev. Lett. 27 (1971) 1722.

[21] W. T. Doyle , J. Appl. Phys. 85 (1999) 2323.

[23] R. Skomski , Simple Models of Magnetism, University Press, Oxford (2008).

[24] Z. Hashin , J. Appl. Mech. 29 (1962) 143.

[25] J. Y. Li , L. Zhang , and S. Ducharme , Appl. Phys. Lett. 90 (2007) 132901.

[26] O. Levy and D. Stroud , Phys. Rev. B 56 (1997) 8035.

[28] P. Banerjee , I. Perez , L. Henn-Lecordier , S. B. Lee , and G. W. Rubloff , Nature Nanotechnology 4 (2009) 292.

[29] A. Lakhtakia , B. Michel , and W. S. Weiglhofer , J. Phys. D: Appl. Phys. 30 (1997) 230.

[30] J. A. Osborn , Phys. Rev. 67 (1945) 351.

[32] T. S. Chow , Mesoscopic Physics of Complex Materials, Springer, Berlin2000.

[35] P. M. Duxbury , P. D. Beale , H. Bak and P. A. Schroedert , J. Phys. D: 23 (1990) 1546.

[36] Zh.-M. Dang , Y.-H. Lin , and C.-W. Nan , Adv. Mater. 15 (2003) 1625.

[37] J.-H. Kim , Y.-W. Lee , M. G. Kim , A. Souchkov , J. S. Lee , H. D. Drew , S.-J. Oh , C. W. Nan , and E. J. Choi , Phys. Rev. B 70 (2004) 172106.

[39] H. E. Alper and R. M. Levy , J. Phys. Chem. 94 (1990) 8401.

[41] R. Coehoorn , D.B. de Mooij , and C. de Waard , J. Magn. Magn. Mater. 80 (1989) 101.

[42] R. Skomski , H.-P. Oepen , and J. Kirschner , Phys. Rev. B 58 (1998) 3223.

[43] R. Skomski and D. J. Sellmyer , J. Appl. Phys. 87 (2000) 4756.

[44] A. Botti , W. Pyckhout-Hintzena , D. Richter , V. Urban , and E. Straube J. Chem. Phys. 124, 174908 (2006).

[45] E. Straube , V. Urban , W. Pyckhout-Hintzen , D. Richter , and C. J. Glinka , Phys. Rev. Lett. 74, 4464 (1995).

[46] G. F. Dionne , J. F. Fitzgerald , and R. C. Aucoin , J. Appl. Phys. (1976) 1708.

[48] J. Y. Li , Phys. Rev. Lett. 90 (2003) 217601.

[49] R. D. Mindlin , International Journal of Solids and Structures 4 (1968) 637.

[50] A. Askar , P. C. Lee , and A. S. Cakmak , Phys. Rev. B 1-3537 (1970) 3525.

[51] R. Skomski , A. Kashyap , and A. Enders , J. Appl. Phys., in press (2011).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 105 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.