Skip to main content

Length scales of interactions in magnetic, dielectric, and mechanical nanocomposites

  • R. Skomski (a1), B. Balamurugan (a1), E. Schubert (a1), A. Enders (a1) and D. J. Sellmyer (a1)...

It is investigated how figures of merits of nanocomposites are affected by structural and interaction length scales. Aside from macroscopic effects without characteristic lengths scales and atomic-scale quantum-mechanical interactions there are nanoscale interactions that reflect a competition between different energy contributions. We consider three systems, namely dielectric media, carbon-black reinforced rubbers and magnetic composites. In all cases, it is relatively easy to determine effective materials constants, which do not involve specific length scales. Nucleation and breakdown phenomena tend to occur on a nanoscale and yield a logarithmic dependence of figures of merit on the macroscopic system size. Essential system-specific differences arise because figures of merits are generally nonlinear energy integrals. Furthermore, different physical interactions yield different length scales. For example, the interaction in magnetic hard-soft composites reflects the competition between relativistic anisotropy and nonrelativistic exchange interactions, but such hierarchies of interactions are more difficult to establish in mechanical polymer composites and dielectrics.

Corresponding author
*Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska
Hide All
[1]Bruggeman, D. A. G., Ann. Phys. (5) 24 (1935) 637.
[2]Christensen, R. M., Mechanics of Composite Materials, Wiley, New York 1979.
[3]Verdier, C., J. Theor. Med. 5 (2003) 67.
[4]Skomski, R., J. Phys.: Condens. Matter 15 (2003) R841.
[5]Chipara, A., Hul, D., Sankar, J., Leslie-Pelecky, D., Bender, A., Yue, L., Skomski, R., and Sellmyer, D. J., Composites B: Engineering 35 (2004) 235.
[6]Chipara, M., Skomski, R., Sellmyer, D. J., Mater. Lett. 61 (2007) 2412.
[7]Ali, N., Chipara, M., Balascuta, S., Skomski, R., and Sellmyer, D. J., J. Nanosci. Nanotechnol. 9 (2009) 4437.
[8]Garnett, J. C. M., Philos. Trans. R. Soc. (London) A 203 (1904) 385.
[9]Skomski, R. and Coey, J. M. D., Phys. Rev. B 48 (1993) 15812.
[10]Hashin, Z. and Shtrikman, S., J. Appl. Phys. 33 (1962) 3125.
[11]Erman, B. and Mark, J. E., Structures and Properties of Rubberlike Networks, Oxford University Press, Oxford 1997.
[12]Dewey, J. M., J. Appl. Phys. 18 (1947) 578.
[13]Schmidt, D., Kjerstad, A. C., Hofmann, T., Skomski, R., Schubert, E., and Schubert, M., J. Appl. Phys. 105 (2009) 113508.
[14]Chakrabarti, B. K. and Benguigui, L. G., Statistical Physics of Fracture and Breakdown in Disordered Systems, University Press, Oxford 1997.
[15]Skomski, R., Li, J.-Y., Zhou, J., and Sellmyer, D. J., in: Materials for Space Applications, Eds. Chipara, M., Edwards, D. L., Benson, R. S., Phillips, S., Mater. Res. Soc. Symp. Proc. 851 (2005) NN1.7.
[16]Polder, D. and van Santen, J. H., Physica 12 (1946) 257.
[17]Kärkkäinen, K. K., Sihvola, A. H., and Nikoskinen, K. I., IEEE Trans. Geosci. and Remote Sensing 38 (2000) 1303.
[18]Velický, B., Kirkpatrick, S., and Ehrenreich, H., Phys. Rev. 175 (1968) 747 .
[19]Kirkpatrick, S., Phys. Rev. Lett. 27 (1971) 1722.
[20]Choy, T. C., Effective Medium Theory, University Press, Oxford 1999.
[21]Doyle, W. T., J. Appl. Phys. 85 (1999) 2323.
[22]Skomski, R. and Coey, J. M. D., Permanent Magnetism, Institute of Physics, Bristol 1999.
[23]Skomski, R., Simple Models of Magnetism, University Press, Oxford (2008).
[24]Hashin, Z., J. Appl. Mech. 29 (1962) 143.
[25]Li, J. Y., Zhang, L., and Ducharme, S., Appl. Phys. Lett. 90 (2007) 132901.
[26]Levy, O. and Stroud, D., Phys. Rev. B 56 (1997) 8035.
[27]Ward, I. M. and Hadley, D. W., Mechanical Properties of Solid Polymers, Wiley, New York 1993.
[28]Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S. B., and Rubloff, G. W., Nature Nanotechnology 4 (2009) 292.
[29]Lakhtakia, A., Michel, B., and Weiglhofer, W. S., J. Phys. D: Appl. Phys. 30 (1997) 230.
[30]Osborn, J. A., Phys. Rev. 67 (1945) 351.
[31]Yeomans, J. M., Statistical Mechanics of Phase Transitions, University Press, Oxford 1992.
[32]Chow, T. S., Mesoscopic Physics of Complex Materials, Springer, Berlin 2000.
[33]Einstein, A., Ann. Phys. 19, 289 (1906); Erratum: 34 (1911) 591.
[34]Skomski, R., Theory of Elasticity of Filled Polymer Networks, THLM Leuna-Merseburg (Diplomarbeit, unpublished, 1986).
[35]Duxbury, P. M., Beale, P. D., Bak, H. and Schroedert, P. A., J. Phys. D: 23 (1990) 1546.
[36]Dang, Zh.-M., Lin, Y.-H., and Nan, C.-W., Adv. Mater. 15 (2003) 1625.
[37]Kim, J.-H., Lee, Y.-W., Kim, M. G., Souchkov, A., Lee, J. S., Drew, H. D., Oh, S.-J., Nan, C. W., and Choi, E. J., Phys. Rev. B 70 (2004) 172106.
[38]Murphy, G., Advanced Mechanics of Materials, McGraw-Hill, New York 1946.
[39]Alper, H. E. and Levy, R. M., J. Phys. Chem. 94 (1990) 8401.
[40]Skomski, R., J. Magn. Magn. Mater. 272276 (2004) 1476.
[41]Coehoorn, R., de Mooij, D.B., and de Waard, C., J. Magn. Magn. Mater. 80 (1989) 101.
[42]Skomski, R., Oepen, H.-P., and Kirschner, J., Phys. Rev. B 58 (1998) 3223.
[43]Skomski, R. and Sellmyer, D. J., J. Appl. Phys. 87 (2000) 4756.
[44]Botti, A., Pyckhout-Hintzena, W., Richter, D., Urban, V., and Straube, E. J. Chem. Phys. 124, 174908 (2006).
[45]Straube, E., Urban, V., Pyckhout-Hintzen, W., Richter, D., and Glinka, C. J., Phys. Rev. Lett. 74, 4464 (1995).
[46]Dionne, G. F., Fitzgerald, J. F., and Aucoin, R. C., J. Appl. Phys. (1976) 1708.
[47]Balamurugan, B., Kraemer, K. L., Reding, N. A., Skomski, R., Ducharme, S., and Sellmyer, D. J., ACS Nano 4 (2010) 1893.
[48]Li, J. Y., Phys. Rev. Lett. 90 (2003) 217601.
[49]Mindlin, R. D., International Journal of Solids and Structures 4 (1968) 637.
[50]Askar, A., Lee, P. C., and Cakmak, A. S., Phys. Rev. B 1-3537 (1970) 3525.
[51]Skomski, R., Kashyap, A., and Enders, A., J. Appl. Phys., in press (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 206 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th March 2018. This data will be updated every 24 hours.