Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T05:07:05.792Z Has data issue: false hasContentIssue false

Low Pressure MOCVD Growth and Characterization of GaAs and InP on Silicon Substrates

Published online by Cambridge University Press:  21 February 2011

M. Razeghi
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
M. Defour
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
F. Omnes
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
J. Nagle
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
P. Maurel
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
O. Acher
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
A. Huber
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
D. Mijuin
Affiliation:
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeville, 91401 - Orsay Cedex, France.
Get access

Abstract

High quality GaAs and InP have been grown on silicon substrates, using low pressure metalorganic chemical vapor deposition technique. The growth temperature is 550°C and the growth rate 100 A/min.

Photoluminescence, X-ray diffraction and electrochemical profiling verified the high quality of these layers. The use of superlattices as buffer layers, (GaAs/GaInP) in the case of GaAs/Si and (GaInAsP/InP) in the case of InP/Si, decreased the amount of misfit dislocations in the epitaxial layer. Carrier concentrations as low as 5.1015 cm−3 have been measured by electrochemical profiling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Shastry, S.K., Zemon, S., M. Oren. J. Cryst. Growth 77, 503 (1986).Google Scholar
(2) Deppe, D.G., Holonyak, N., Main, D.W., Hsieh, K. C., Jackson, G.S., Matyi, R.T., Shichijo, H., Epler, J.E., Chung, H.F.. Appl. Phys. Lett. 51, 637 (1987).CrossRefGoogle Scholar
(3) Lee, M.K., Wuu, D.S., Tung, H.H.. Appl. Phys. Lett. 50, 1725 (1987).Google Scholar
(4) Razeghi, M., Omnes, F., Defour, M., Ph. Maurel. Appl. Phys. Lett. 52, 209 (1988).CrossRefGoogle Scholar
(5) Deppe, D.G., Namn, D.W., Holonyak, N., Hsieh, K.C., Matyi, R.J., Shichijo, H., Epler, J E., Chung, M.F.. Appl. Phys. Lett. 5–1, 1271 (1987).Google Scholar
(6) Wilson, B.D., Bonner, C.E., Miller, R.C., Sputz, S.K., Harris, T.D., Lamont, M.G., Dupuis, R.D., Vernon, J.M., Haven, V.E., Lun, R.M., Klingert, J.K.. J. Electron. Mater. 17, 115 (1988).Google Scholar
(7) Razeghi, M., Blondeau, R., Kazmierski, K., Krakowski, M., Duchemin, J.P.. Appl. Phys. Lett. 46, 131 (1985).Google Scholar
(8) Hayashi, I.. Jpn. J. App]. Phys. 19, 23 (1980).CrossRefGoogle Scholar
(9) Razeghi, M., Maurel, Ph., Omnes, F., Armor, S. Ben, Dmowski, L., Portal, J.C.. Appl. Phys. Lett. 48, 1267 (1986).Google Scholar
(10) Razeghi, M. in “Lightwave technology for communications”, Semiconductors and Semimetals, vol.22, edited by Tsang, W.T. (Academic Press, New-York, 1985).Google Scholar