Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-27T18:07:51.889Z Has data issue: false hasContentIssue false

Low temperature CVD growth of graphene nano-flakes directly on high K dielectrics

Published online by Cambridge University Press:  02 March 2011

Mark H. Rümmeli
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 27 01 16, 01171 Dresden,Germany Technische Universität Dresden, 01062 Dresden, Germany
Alicja Bachmatiuk
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 27 01 16, 01171 Dresden,Germany
Arezoo Dianat
Affiliation:
Technische Universität Dresden, 01062 Dresden, Germany
Andrew Scott
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 27 01 16, 01171 Dresden,Germany
Felix Börrnert
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 27 01 16, 01171 Dresden,Germany
Imad Ibrahim
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 27 01 16, 01171 Dresden,Germany Technische Universität Dresden, 01062 Dresden, Germany
Shasha Zhang
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 27 01 16, 01171 Dresden,Germany
Ewa Borowiak-Palen
Affiliation:
Zachodniopomorski Uniwersytet Technologiczny, Pulaskiego 10, 70322 Szczecin, Poland
Gianaurelio Cuniberti
Affiliation:
Technische Universität Dresden, 01062 Dresden, Germany Division of IT Convergence Engineering and National Center for Nanomaterials Technology,POSTECH, Pohang 790-784, Republic of Korea
Bernd Büchner
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 27 01 16, 01171 Dresden,Germany
Get access

Abstract

The potential of MgO and ZrO2 as catalytically active substrates for graphene formation via thermal CVD is explored. Experimental observations show the growth of single and multi-layer graphene nano-flakes over MgO and ZrO2 at low temperatures. The graphene nano-flakes are found to anchor at step sites. Ab initio calculations indicate step sites are crucial to adsorb and crack acetylene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubunos, S. V., Grigoriava, I. V. and Firsov, A. A., Science 306, 666 (2004).Google Scholar
2. Jiao, L., Zhang, L., Wang, X., Diankov, G. and Dai, H., Nature 458, 877 (2009).Google Scholar
3. Stanley, M., Wang, H., Puls, C., Forster, J., Jackson, T. N., McCarthy, K., Clouser, B. and Liu, Y., Applied Physics Letters 90, 143518 (2007).Google Scholar
4. Lu, Y. H. and Feng, Y.P., Journal of Physical Chemistry C 113, 20841 (2009).Google Scholar
5. Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K. and Novoselov, K. S., Science 323, 610 (2009).Google Scholar
6. Sofo, J. O., Chaudhari, A. S. and Barber, G. D., Physical Review B 75, 153401 (2007).Google Scholar
7. Lemme, M. C., Echtermeyer, T. J., Baus, M. and Kurz, H., IEEE Electron Device Letters 28, 282 (2007).Google Scholar
8. Perdew, J. P., Burke, K. and Ernzerhof, M., Physical Review Letters 77, 3865 (1996).Google Scholar
9. Blöchl, P. E., Physical Review B 50, 17953 (1994).Google Scholar
10. Kresse, G. and Furthmüller, J., Physical Review B 54, 11169 (1996).Google Scholar
11. Henkelman, G., Arnaldsson, A. and Jonsson, H., Computational Materials Science 36, 354 (2006).Google Scholar
12. Monkhorst, H. J. and Pack, J. D., Physical Review B 13, 5188 (1976).Google Scholar
13. Rümmeli, M. H., Kramberger, C., Grüneis, A., Ayala, P., Gemming, T., Büchner, B. and Pichler, T., Chemistry of Materials 19, 4105 (2007).Google Scholar
14. Rümmeli, M. H., Bachmatiuk, A., Scott, A., Börrnert, F., Warner, J. H., Hoffmann, V., Lin, J. H., Cuniberti, G. and Büchner, B., ACS Nano 4, 4206 (2010).Google Scholar
15. Ferrari, A.C., Solid State Communications 143, 47 (2007).Google Scholar
16. Rümmeli, M. H., Schäffel, F., Kramberger, C., Gemming, T., Bachmatiuk, A., Kalenczuk, R. J., Rellinghaus, B., Büchner, B. and Pichler, T., Journal of the American Chemical Society 129, 15772 (2007).Google Scholar
17. Rümmeli, M. H., Schäffel, F., Bachmatiuk, A., Adebimpe, D., Trotter, G., Börrnert, F., Scott, A., Coric, E., Sparing, M., Rellinghaus, B., McCormick, P. G., Cuniberti, G., Knupfer, M., Schultz, L. and Büchner, B., ACS Nano 4, 1146 (2010).10.1021/nn9016108Google Scholar
18. Steiner, S. A. III, Baumann, T. F., Bayer, B. C., Blume, R., Worsley, M. A., MoberlyChan, W. J., Shaw, E. L., Schlögl, R., Hart, A. J., Hofmann, S. and Wardle, B. L., Journal of the American Chemical Society 131, 12144 (2009).Google Scholar
19. Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Röhrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B. and Seyller, T., Nature Materials 8, 203 (2009).Google Scholar
20. Hofmann, S., Csányi, G., Ferrari, A. C., Payne, M. C. and Robertson, J., Physical Review Letters 95, 036101–1 (2005).Google Scholar
21. Helveg, S., Clopez-Cartes, , Sehested, J., Hansen, P. L., Clausen, B. S., Rostrup-Nielsen, J. R., Abild-Pedersen, F., and Nørskov, J. K., Nature (London) 427, 426 (2004).Google Scholar
22. Scott, A., Dianat, A., Börrnert, F., Bachmatiuk, A., Zhang, S., Warner, J. H., Borowiak-Palen, E., Knupfer, M., Büchner, B., Cuniberti, G. and Rümmeli, M. H., Applied Physics Letters. submitted.Google Scholar