Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T15:30:53.567Z Has data issue: false hasContentIssue false

Low-Field Colossal Magnetoresistance in Manganite Tunnel Junctions

Published online by Cambridge University Press:  10 February 2011

J. Nassar
Affiliation:
UMR CNRS-Thomson CSF, Domaine de Corbeville, F-91404, Orsay
M. Viret
Affiliation:
CEA Saclay, Service de l'Etat Condensé, F-91191 Gif sur Yvette
M. Drouet
Affiliation:
UMR CNRS-Thomson CSF, Domaine de Corbeville, F-91404, Orsay
J. P. Contour
Affiliation:
UMR CNRS-Thomson CSF, Domaine de Corbeville, F-91404, Orsay
C. Fermon
Affiliation:
CEA Saclay, Service de l'Etat Condensé, F-91191 Gif sur Yvette
A. Fert
Affiliation:
CEA Saclay, Service de l'Etat Condensé, F-91191 Gif sur Yvette
Get access

Abstract

Large magnetoresistance values are obtained on tunnel junctions epitaxially deposited by pulsed-laser deposition and consisting of ferromagnetic manganite La0.67Sr0.33MnO3 electrodes separated by various tunnel barriers: SrTiO3, PrBaCu2.8Ga0.2O7 and CeO2. The magnetoresistance can be decomposed into a low-field and a high-field contribution. The latter is attributed to the presence of canted interfacial manganite phases, as confirmed by the temperature behaviour of the resistance. A low-field magnetoresistance ratio of 450% below 100 Oe is obtained on a sample with a SrTiO3 barrier, indicating a spin polarization value in excess of 0.83 for the manganite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zener, C., Phys. Rev. 82, 3 403 (1951)Google Scholar
2. Jullière, M., Physics Letters, 54, 3, 225 (1975)Google Scholar
3. Tedrow, P.M. and Meservey, R., Phys. Rev. Lett. 26, 192 (1971)Google Scholar
4. Moodera, J.S., Gallagher, E.F., Robinson, K., Nowak, J., Appl. Phys. Lett 70, 22, 3050 (1997)Google Scholar
5. Mathur, N.D., Burnell, G., Isaac, S.P., Jackson, T.J., Teo, B.S., MacManus-Driscoll, J.L., Cohen, L.F., Everts, J.E., Blamire, M.G., Nature, 387, 266 (1997)Google Scholar
6. Steenbeck, K., Eick, T., Kirsch, K., O'Donnel, K, Steinbess, E., Appl. Phys. Lett. 71, 7, 968 (1997)Google Scholar
7. Sun, J.Z., Krusin-Elbaum, L., Duncombe, P.R., Gupta, A., Laibowitz, R.B., Appl. Phys. Lett. 70, 13, 1769 (1997)Google Scholar
8. Coey, J.M.D., Viret, M., Ranno, L., Ounadjela, K. Phys. Rev. Lett. 75, 21, 3910 (1995)Google Scholar
9. Xu, Y., Guan, W., Physica B 206, 59 (1993)Google Scholar
10. Walkenhorst, A., Schmitt, M., Adrian, H., Petersen, K., Appl. Phys. Lett. 64, 14, 1871 (1994)Google Scholar
11. Simmons, J.G., J. Appl. Phys, 43, 1793 (1963)Google Scholar
12. de Gennes, P.G., Phys. Rev. US, 1, 141 (1959)Google Scholar
13. Viret, M., Drouet, M., Nassar, J., Contour, J.P., Fermon, C., Fert, A., Europhys. Lett. 39, 5, 545 (1997)Google Scholar