Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T20:45:37.282Z Has data issue: false hasContentIssue false

Luminescence Processes in Si1-xGex/Si Heterostructures Grown by Chemical Vapor Deposition

Published online by Cambridge University Press:  25 February 2011

J.C. Sturm
Affiliation:
Department of Electrical Engineering, Princeton Center for Photonic & Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544
X. Xiao
Affiliation:
Department of Electrical Engineering, Princeton Center for Photonic & Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544
Q. Mi
Affiliation:
Department of Electrical Engineering, Princeton Center for Photonic & Optoelectronic Materials (POEM), Princeton University, Princeton, NJ 08544
L.C. Lenchyshyn
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, B.C. V5A1S6, Canada
M.L.W. Thewalt
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, B.C. V5A1S6, Canada
Get access

Abstract

Well-resolved band-edge exciton photoluminescence (PL) has been observed in strained Si1-xGex. heterostructures grown on Si(100) by rapid thermal chemical vapor deposition. The luminescence is due to shallow-impurity bound excitons at low temperatures (under 20K) and at higher temperatures is due to free excitons or electron-hole plasmas, depending on the pump power. The luminescence can also be electrically pumped, with both the electroluminescence and PL persisting above room temperature in samples with a sufficient bandgap offset. Loss of carrier confinement and subsequent non-radiative recombination outside the Si1-xGex. is found to be the reason for reduced PL and EL at high temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Noel, J.P., Rowell, N.L., Houghton, D.C. and Perovic, D.D., Appl. Phys. Lett. 57, 1037 (1990).Google Scholar
2. Okumura, H., Miki, K., Misawa, S., Sakamoto, K., Sakamoto, T. and Yoshida, S., Jpn. J. Appl. Phys. 28, L1803 (1989).Google Scholar
3. Zachai, R., Eberl, K., Abstreiter, G., Kasper, E. and Kibbel, H., Phys. Rev. Lett. 64, 1055 (1990).Google Scholar
4. Schmid, U., Christensen, N.E. and Cardona, M., Phys. Rev. Lett. 65, 2610 (1990).CrossRefGoogle Scholar
5. Terashima, K., Tajima, M. and Tatsumi, T., Appl. Phys. Lett. 57, 1925 (1990).Google Scholar
6. Sturm, J.C., Manoharan, H., Lenchyshyn, L.C., Thewalt, M.L.W., Rowell, N.L., Neol, J.P., and Houghton, D.C., Phys. Rev. Lett. 66, 1362 (1991).CrossRefGoogle Scholar
7. Schwartz, P.V. and Sturm, J.C., Appl. Phys. Lett. 57, 2004 (1990).Google Scholar
8. Sturm, J.C., Garone, P.M. and Schwartz, P.V., J. Appl. Phys. 69, 542 (1991).Google Scholar
9 Sturm, J.C., Schwartz, P.V., Prinz, E.J. and Manoharan, H., J. Vac. Sci. Technol. B 9, 2011 (1992).Google Scholar
10. Xiao, X., Liu, C.W., Sturm, J.C., Lenchyshyn, L.C. and Thewalt, M.L.W., Appl. Phys. Lett. 60, 2135 (1992).CrossRefGoogle Scholar
11. Weber, J. and Alonso, M.I., Phys. Rev. B 40, 5683 (1989).CrossRefGoogle Scholar
12. Xiao, X., Liu, C.W., Sturm, J.C., Lenchyshyn, L.C. and Thewalt, M.L.W., Appl. Phys. Lett. 60, 1720 (1992).Google Scholar
13. Rowell, N.L., Noel, J.P., Houghton, D.C. and Buchana, M., Appl. Phys. Lett. 58, 057 (1991).Google Scholar
14. Robbins, D.J., Calcott, P., Leong, W.Y., Appl. Phys. Lett. 59, 1350 (1991).Google Scholar
15. Walle, C.G. van de and Martin, R.M., Phys. Rev. B. 34, 5621 (1986).Google Scholar
16. Mi, Q., Xiao, X., Sturm, J.C., Lenchyshyn, L.C. and Thewalt, M.L.W., Appl. Phys. Lett. 60, 3177 (1992).Google Scholar
17. Sturm, J.C., Xiao, X., Schwartz, P.V., Liu, C.W., Lenchyshyn, L.C. and Thewalt, M.L.W., J. Vac. Sci. Technol. B10, 1908 (1992).Google Scholar