Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T15:59:16.733Z Has data issue: false hasContentIssue false

Luminescence properties of newly developed red-emitting phosphors M2Si2O7:Eu3+ (M=La, Y) under UV/VUV excitation

Published online by Cambridge University Press:  01 February 2011

Zhiya Zhang
Affiliation:
zhangzhiy04@st.lzu.edu.cnDepartment of Material Science, School of Physical Science and Technology, Lanzhou UniversityNo.222 South Tianshui RoadLanzhou Gansu 730000China, People's Republic of
Yuhua Wang
Affiliation:
wyh@lzu.edu.cn, Department of Material Science, School of Physical Science and Technology, Lanzhou University, No.222 South Tianshui Road, Lanzhou, Gansu, 730000, China, People's Republic of
Get access

Abstract

The red-emitting phosphors of Eu3+ doped M2Si2O7 (M=La, Y) were synthesized by a solid-state reaction method and their luminescence properties in UV-VUV region have been studied. On the excitation spectra, the Eu3+-O2- CT band is of higher intensity for La2Si2O7, while for Y2Si2O7, the absorption around 150nm is much stronger and this can be assigned to the Y3+-O2- CT band in company with the Si-O group absorption. The emission spectra show higher intensity and better color purity for La2Si2O7:Eu3+ under 254nm excitation due to Eu3+ occupying the non-centrosymmetric site. Under 147nm excitation, Y2Si2O7:Eu3+ exhibits stronger emission with purer red, which can be corresponded to the absorption of Y3+-O2- CT in the VUV region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fleet, Michael E. and Liu, Xiaoyang, J. Solid State Chem., 161, 166 (2001).Google Scholar
2 Monteverde, F. and Celotti, G., J. Eur. Ceram. Soc., 22, 721 (2002).Google Scholar
3 Leonyuk, N.I., Belokoneva, E.L., Bocelli, G., Righi, L., Shvanskii, E.V., Henrykhson, R.V., Kulman, N.V. and Kozhbakhteeva, D.E., J. Cryst. Growth, 205, 361 (1999).Google Scholar
4 Bolech, M. and Janssen, F.J.J.G., J. Chem. Thermodyn., 28, 1319 (1996).Google Scholar
5 Seifert, H. J., F. Aldinger and Kolitsch, U., J. Alloy. and Compd., 257, 104 (1997).Google Scholar
6 Felsche, J., Struct. Bond., 13, 100 (1973).Google Scholar
7 Ito, J. and Johnson, H., Amer. Miner., 5, 1940 (1968).Google Scholar
8 Parmentier, Julien, Bodart, Philippe R., Audoin, Ludovic, Massouras, Georges, Thompson, Derek P., Harris, Robin K., Goursat, Paul, and Besson, Jean-Louis, J. Solid State Chem., 149, 16 (2000).Google Scholar
9 Tzvetkov, G. and Minkova, N., Solid State Ionics, 116, 241 (1999).Google Scholar
10 Monteverde, F. and Celotti, G., J. Eur. Ceram. Soc., 19, 2021 (1999).Google Scholar
11 Mesquita, A. H. Gomes de and Bril, A., Mater. Res. Bull., 4, 643 (1969).Google Scholar
12 Koike, Junro, Kojima, Takehiro and Toyonaga, Ryuya, J. Electrochem. Soc., 126, 1008 (1979).Google Scholar
13 Mishra, K.C., Johnson, K.H., Deboer, B.G., Berkowitz, J.K., Olsen, J. and Dale, E.A., J. Lumin., 47, 197 (1991).Google Scholar
14 Brien, W. L. O., Jia, J., Dong, Q.Y., and Callcott, T. A., Phys. Rev. B, 44, 1013 (1991).Google Scholar
15 Wang, Yuhua, Guo, Xuan, Endo, Tadashi, Murakami, Yukio and shirozawa, Mizumoto, J. Solid State Chem., 177, 2242 (2004).Google Scholar
16 Wang, Lingli and Wang, Yuhua, J. Alloy. and Compd., In press (2006).Google Scholar
17 Ozawa, L., Forest, H., Jaffe, P.M., and Ban, G., J. Electrochem. Soc.: Solid State Science, 118, 482 (1971).Google Scholar