Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T21:00:13.193Z Has data issue: false hasContentIssue false

Magnetic And Structural Properties Of Laser-Ablated Planar And Cylindrical Co Thin Films

Published online by Cambridge University Press:  21 February 2011

V. Madurga
Affiliation:
Departamento de Física. Universidad Pública de Navarra. Campus Arrosadía. E-31006 Pamplona.Spain. vmadurga@upna.es
J. Vergara
Affiliation:
Departamento de Física. Universidad Pública de Navarra. Campus Arrosadía. E-31006 Pamplona.Spain. vmadurga@upna.es
R. J. Ortega
Affiliation:
Departamento de Física. Universidad Pública de Navarra. Campus Arrosadía. E-31006 Pamplona.Spain. vmadurga@upna.es
I. P. De Landazabal
Affiliation:
Departamento de Física. Universidad Pública de Navarra. Campus Arrosadía. E-31006 Pamplona.Spain. vmadurga@upna.es
C. Favieres
Affiliation:
Departamento de Física de Materiales. Facultad de Ciencias Físicas.Universidad Complutense de Madrid. E-28040 Madrid., Spain
Get access

Abstract

Planar and cylindrical Co thin films have been obtained by pulsed laser ablation. X-ray diffractograms have shown no crystalline structure for the as-deposited samples, while the 450 °C annealed samples exhibit Co fcc crystalline peaks. The Scanning Tunnelling Microscopy has revealed a small increase of the surface roughness for the annealed films. The Hall effect has been used to determine the value of the spontaneous magnetization, Ms, at room temperature; Ms, = 14 kgauss for the as-deposited sample and Ms, = 17.6 kgauss for the 450 °C annealed sample. From transverse magnetooptic Kerr effect, it has been found that the as-deposited samples exhibit magnetic bistability, with a coercive field, Hc, = 6 0e. The annealed samples also show a bistable behavior until the annealing temperature is 450 °C. Besides, it has been observed an increase of Hc up to = 50 Oe, when the annealing temperature increases. The vibrating sample magnetometry has confirmed these results, showing that the magnetization participating in the magnetooptic effect for these low fields is the total spontaneous magnetization of these samples. Moreover, the cylindrical films exhibit magnetoelastic behavior when they are subjected to angular deformation. It has been found that the saturation magnetostriction constant is negative.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grigson, C.W.B., Dove, D.B., and Stilwell, G.R., Nature 204, 173 (1965).Google Scholar
2. Fujime, S., Jap. J. Appl. Phys. 5, 1029 (1966).Google Scholar
3. Davies, H.A., Aucote, J., and Hull, J.B., Nature Physical Science, 246,13 (1973).Google Scholar
4. Tamura, K. and Endo, H., Phys. Lett. 29A, 52 (1969)Google Scholar
5. Valiev, R.Z., Korznikova, G.F., Mulyukov, K.Y., Mishra, R.S. and Mukherjee, A.K., Phil. Mag.B 75, 803 (1997).Google Scholar
6. Hiroshima, Y., Ishiguro, T., Urata, I., Makita, H., Ohta, H., Tohogi, M., and Ichinose, Y., J. Appl. Phys. 79, 3572 (1996).Google Scholar
7. Owen, E. A., and Jones, D. Madoc, Proc. Phys. Soc. B67, 456 (1954).Google Scholar
8. Dahlberg, E.D., Riggs, K., and Prinz, G.A., J. Appl. Phys. 63 (8) 1988.Google Scholar
9. Chien, C.L., and Westgate, C.R., inThe Hall effect and its applications, edited by Plenum Press, New York (1980) and references therein.Google Scholar
10. Madurga, V., Hernando, A., and Nielsen, O.V.. J. Phys. E: Sci. Instrum., 17, 813 (1984).Google Scholar