Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T22:45:02.859Z Has data issue: false hasContentIssue false

Magnetic Behavior due to Quenching Temperature in Co-based Heusler-type Alloys Co2MnZ (Z=Si, Ge, Sn)

Published online by Cambridge University Press:  26 February 2011

Shigeyuki Kikuchi
Affiliation:
s_kiku-shige.com@p.s.osakafu-u.ac.jp, Osaka Prefecture University, Department of Physical Science, Graduate School of Science, 1-1, Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
Tetsuya Fujiwara
Affiliation:
s_tetsuya.f@p.s.osakafu-u.ac.jp, Osaka Prefecture University, Department of Physical Science, Graduate School of Science, 1-1, Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
Hiroki Ishibashi
Affiliation:
hiroki@p.s.osakafu-u.ac.jp, Osaka Prefecture University, Department of Physical Science, Graduate School of Science, 1-1, Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
Mineo Kogachi
Affiliation:
kogachi@p.s.osakafu-u.ac.jp, Osaka Prefecture University, Department of Physical Science, Graduate School of Science, 1-1, Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
Get access

Abstract

Magnetic behavior in Co-based Heusler alloys Co2MnZ (Z=Si, Ge, Sn) is investigated as a function of quenching temperature. The mean magnetic moment decreases with increase in quenching temperature in Co2MnSi and Co2MnGe while it remains almost constant in Co2MnSn. Relation between the magnetic behavior and the atomic disorder is discussed.

The results of the lattice constant and the electrical resistance measurements are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujii, S., Sugimura, S., Ishida, S., and Asano, A., J. Phys. Condensed Mater., 2, 8583 (1990).10.1088/0953-8984/2/43/004Google Scholar
2. Garanakis, I., Dederichs, P.H., and Papanikolaou, N., Phys. Rev. B66, 174429 (2002).Google Scholar
3. Miura, Y., Nagao, K., and Shirai, M., Phys. Rev., B69, 144413 (2004).10.1103/PhysRevB.69.144413Google Scholar
4. Picozzi, S. and Continenza, A., Phys. Rev., B69, 094423 (2004).Google Scholar
5. Miura, Y., Shirai, M., and Nagao, K., J. Appl. Phys., 99, 08J112 (2006).Google Scholar
6. Galanakis, I., Ozdogan, K., Aktas, B., and Sasioglu, E., Appl. Phys. Lett., 89, 042502 (2006).Google Scholar
7. Kogachi, M., Tadachi, N., and Nakanishi, T., Intermetallics, 14, 742 (2006).Google Scholar
8. Fujiwara, T., Kikuchi, S., Ishibashi, H., and Kogachi, M., MRS Fall Meeting, Boston (2006).Google Scholar
9. Webster, P.J., J. Phys. Chem. Solids, 32, 1221 (1971).Google Scholar
10. Ravel, B., Raphael, M.P., and Harris, V.G., Phys. Rev. B65, 184431 (2002).Google Scholar
11. Kawamiya, N., Nishiono, Y., Matsuo, M. and Asano, S., Phys. Rev. B44, 12406 (1991).Google Scholar
12. Nishiono, Y., Inoue, S., Asano, S. and Kawamiya, N., Phys. Rev. B48, 13607 (1993).Google Scholar
13. Mooij, J.H., Phys. Stat. Solidi, A17, 521 (1973).Google Scholar