Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T08:51:06.503Z Has data issue: false hasContentIssue false

Magnetic Chiral Dichroism Studies using Energy Filtered Images

Published online by Cambridge University Press:  01 February 2011

Etienne Snoeck
Affiliation:
snoeck@cemes.fr, CNRS, CEMES, 29 rue J. Marvig, Toulouse, 31400, France, +33(0)562 257 891, +33(0)562 257 999
Benedicte Warot-Fonrose
Affiliation:
warot@cemes.fr, CEMES-CNRS, 29 rue jeanne Marvig, BP 94347, Toulouse, 31055, France
Christophe Gatel
Affiliation:
gatel@cemes.fr, CEMES-CNRS, 29 rue jeanne Marvig, BP 94347, Toulouse, 31055, France
Florent Houdellier
Affiliation:
florent@cemes.fr, CEMES-CNRS, 29 rue jeanne Marvig, BP 94347, Toulouse, 31055, France
Get access

Abstract

We present the quantitative measurement of inelastic intensity distributions in diffraction patterns with the aim of studying magnetic materials. The original idea of using inelastic signal in a transmission electron microscope to measure magnetic information has been proposed recently by Schattschneider et al [1] and various experimental set-ups can be imagined [2,3]. We focus on a new experimental configuration which we use to acquire and collect a map of the signal with a high signal-to-noise ratio. We will also present the numerical treatments that need to be performed to get spatially accurate information and energy resolution. We will illustrate our method studying iron single crystal and discuss the effects of the drift and non-isochromaticity corrections.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kunes, J., Novak, P., Carlino, E., Fabrizioli, M., Panaccione, G., Rossi, G., Nature 441 (2006) 2006 Google Scholar
2. Hébert, C., Schattschneider, P., Rubino, S., Novak, P., Rusz, J. and Stöger-Pollach, M., Ultramicroscopy (2007), doi:10.1016/j.ultramic.2007.07.011Google Scholar
3. Schattschneider, P., Hébert, Cécile, Rubino, Stefano, Stöger-Pollach, Michael, Rusz, Ján and Novák, Pavel, Ultramicroscopy (2007), doi:10.1016/j.ultramic.2007.07.002Google Scholar
4. Stöhr, J., Wu, Y., Hermsmeier, B.D., Samant, M.G., Harp, G.R., Koranda, S., Dunham, D., and Tonner, B.P., Science 259, 658 (1993);Google Scholar
5. Hébert, C., Schattschneider, P., Ultramicroscopy 96 (2003) 2003 10.1016/S0304-3991(03)00108-6Google Scholar
6. Warot-Fonrose, B., Houdellier, F., Hÿtch, M.J., Calmels, L., Serin, V. and Snoeck, E., Ultramicroscopy (2007), doi:10.1016/j.ultramic.2007.05.013Google Scholar
7. Schattschneider, P., Jouffrey, B., Nelhiebel, M., Phys. Rev. B, 54, (1996), 3861 Google Scholar
8. Morniroli, J.P., Large angle convergent beam electron diffraction: applications to crystal defects, Société Française des Microscopies (SFµ), Paris, (2002).Google Scholar
9. Morniroli, J.P., Houdellier, F., Roucau, C., Puigalli, J., Gesti, S., Radjaïmia, A., Ultramicroscopy (2007), doi:10.1016/j.ultramic.2007.05.013Google Scholar
10. Gatel, C., Houdellier, F., Schattschneider, P., Warot-Fonrose, B., in preparationGoogle Scholar
11. Schaffer, B., Kothleitner, G., Grogger, W., Ultramicroscopy 106 (2006) 2006 10.1016/j.ultramic.2006.04.028Google Scholar
12. Lozano-Perez, S., Titchmarsh, J. M., Jenkins, M. L., Ultramicroscopy 106 (2006) 2006–9110.1016/j.ultramic.2005.06.002Google Scholar