Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T04:33:53.281Z Has data issue: false hasContentIssue false

Magnetic Transitions in the Double Perovskite Sr2FeRe1-xFexO6(0≤X≤0.5)

Published online by Cambridge University Press:  01 February 2011

Haitao Gao
Affiliation:
gao@uni-mainz.de, Inorganic and Analytical Chemistry Institute, University of Mainz, Chemistry, Mainz, Germany
Vadim Ksenofotov
Affiliation:
ksenofon@uni-mainz.de, Inorganic and Analytical Chemistry Institute, University of Mainz, Chemistry, Mainz, Germany
Joachim Barth
Affiliation:
barthj@uni-mainz.de, Inorganic and Analytical Chemistry Institute, University of Mainz, Chemistry, Mainz, Rheinland-Pfalz, Germany
Martin Panthöefer
Affiliation:
panthofer@uni-mainz.de, Inorganic and Analytical Chemistry Institute, University of Mainz, Chemistry, Mainz, Germany
Felser Claudia
Affiliation:
felser@uni-mainz.de, United States
Wolfgang Tremel
Affiliation:
tremel@uni-mainz.de, Inorganic and Analytical Chemistry Institute, University of Mainz, Chemistry, Mainz, Rheinland-Pfalz, Germany
Get access

Abstract

The synthesis, structure, and magnetic and transport properties of solid solutions Sr2FeRe1-xFexO6 (0≤x≤0.5) are reported. A structural evolution in the solid solutions from a double perovskite to perovskite is observed with increasing Fe/Re disorder. Except for the metallic parent compound all members of the series are semiconducting. For the Fe-doped samples a change from ferrimagnetic interactions in the parent compound to a complex superposition of ferrimagnetic and antiferromagnetic interactions was observed. The magnetic moment decreases with x, whereas the Curie temperature TC remains unaffected. The magnetic and Mössbauer data suggest Fe to act as a redox-buffer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y., Nature 395, 677 (1998).Google Scholar
[2] Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y., Phys. Rev. B 59, 11159 (1999).Google Scholar
[3] Jung, A., Bonn, I., Ksenofontov, V., Melnyk, G., Ensling, J., Felser, C., Tremel, W., J. Mater. Chem. 15, 1760 (2005).Google Scholar
[4] Jung, A., Ksenofontov, V., Reiman, S., Therese, H. A., Kolb, U., Felser, C., Tremel, W., Phys. Rev. B 73, 144414 (2006).Google Scholar
[5] Jung, A., Bonn, I., Ksenofontov, V., Panthöfer, M., Reiman, S., Felser, C., Tremel, W., Phys. Rev. B 75, 184409 (2007).Google Scholar
[6] Lagarec, K., Rancourt, D. G., Nucl.Inst. Meth. B 129, 266 (1997).Google Scholar
[7] Balcells, L., Navarro, J., Bibes, M., Roig, A., Martínez, B., Fontcuberta, J., Appl. Phys. Lett. 78, 781 (2001).Google Scholar
[8] Lebon, A., Adler, P., Bernhard, C., Boris, A. V., Pimenov, A. V., Maljuk, A., Lin, C. T., Ulrich, C., Keimer, B., Phys. Rev. Lett. 92, 037202 (2004).Google Scholar