Skip to main content

Material Analysis and Radioisotope Studies of Spent Nuclear Fuel found in the Marine Environment

  • I.D. Baikie (a1), Frank Dennis (a2), Ron Crawford (a2) and Massimo Scirea (a2)

Sand-sized particles of spent nuclear fuel have been found in the environment at Dounreay, north Scotland. These particles, believed to have been discharged during early stages of site operations in the 1960s, have been recovered from areas within the Site, coastal foreshore adjacent to the Site and offshore (marine) environments. As part of the Dounreay Site Restoration Plan, a significant program of work is being undertaken to establish the fate of the Dounreay particles in the marine environment. This program includes materials analysis of particles and particle analogues

The diverse depositional environments, coupled to relatively long fuel-particle residence times, allow insight to be gained into the behaviour of the particles in the natural environment. This includes the effects of physical, chemical and mechanical processes such as particle erosion and corrosion, particle abrasion and particle-saltwater interaction. Using materials analysis techniques including Scanning Electron Microscopy, Energy Dispersive X-Ray Analysis, Electron Probe Microanalysis, together with 137Cs activity measurement we review the fuel-particle mechanical and chemical stability and current radio-isotope composition. These studies allows us to identify the fuel provenance, fuel treatment history and draw some general conclusions of the ultimate fuel particle residence time. We demonstrate that radioisotope modelling strongly indicates that particle break-up is limited by the chemical effects of the marine environment coupled with the native oxide films present on the metallic fuel. Particle transport and distribution are governed by environmental effects on the sediment and sediment transport mechanisms such as tidal currents and storm events.

This study is unique in that it involves the potential effects of long-term saltwater and abrasion interactions with fuel matrixes containing both U-Al and U-Mo of which there is little literature available.

Hide All
1.Baikie, I. D., Dennis, F., Scirea, M. and Crawford, R., submitted to Mater. Res. Soc. Proc. Session CC Scientific Basis for Nuclear Waste Management XXVIII.
2.Russell, S. and Koskelainen, M., “The Dounreay Particle Resume”, UKAEA Dounreay Stakeholders Report (2003).
3.Potter, P., Ray, I., Thiele, H. and Wiss, T., “On the Constitution of Dounreay Radioactive Particles, Vol 1 SEM”, UKAEA Dounreay Internal Report (2001).
4.Bremier, S., P.Potter, Ray, I. and Walker, C., “On the Constitution of Dounreay Radioactive Particles, Vol 2 EMPA”, UKAA Dounreay Internal Report (2002).
5.Potter, P., Ray, I., Tamborini, G., Theile, H. and Wiss, T., “On the Constitution of Dounreay Radioactive Particles Vol 2a”, UKAEA Dounreay Internal Report (2003).
6.Fundamental University Physics, Vol. III, Quantum and Statistical Physics p361, Alonso-Finn, Addison-Wesley Publishing (1983).
7.Metals Handbook, 9th Ed, Vol 13, p815 (1987).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 33 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st March 2018. This data will be updated every 24 hours.