Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T12:38:46.695Z Has data issue: false hasContentIssue false

Material and Interface Characterization of Cu99Ti1 Thin Films Metallized on Polyimide

Published online by Cambridge University Press:  15 February 2011

E. Kondoh
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
T.P. Nguyen
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Physique Cristalline 2, Rue de la Houssinière, 44322 Nantes Cedex 3, France
Get access

Abstract

Copper films with a small amount of an alloy element (1 wt % Ti) were metallized on polyimide. Plasma pre-treatment of the polyimide surface and post-metallization annealing were used to modify the interface. Interfaces and metal film layers were investigated; a drastic increase in adhesion strength, the suppression of Cu diffusion into polyimide, and the improvement of (111) texture were found. Composition analysis data taken from the interface indicated the accretion of nitrogen at the interface. The formation of Ti-related chemical bonds, suggested by X-ray photoelectron spectroscopy, can explain the above-mentioned experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gupta, D., Faupel, F., and Willecke, R., in Diffusion in amorphous materials, Eds., Gupta, H.J.a.D., (The minerals, metals & materials Society, Pittsburgh, PA, 1993), pp. 189.Google Scholar
[2] Hu, C.-K., Small, M.B., Kaufman, F., and DPearson, J., in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, Eds., Wong, S.S. and Furukawa, S., (Materials Research Socity, Pittburg, PA, 1989), pp. 369.Google Scholar
[3] Cabrai, J. C., Harper, J.M., Holloway, K., Smith, D.A., and Schad, R.G., J. Vac. Sci. Technol. A10, 1706(1992).Google Scholar
[4] Ding, P.J., Lanford, W.A., Hymes, S., and Murarka, S.P., J. Appl. Phys. 75, 3627 (1994).Google Scholar
[5] Knorr, D.B., and Rodbell, K.P., J. Appl. Phys. 79, 2409 (1996).Google Scholar
[6] Inagaki, N., Tasaka, S., and Hibi, K., J. Adhesion Sci. Technol. 8, 395 (1994).Google Scholar
[7] Paik, K.W., Ruoff, A.L., in Adehsion in Solids, Eds., Mattox, D. M., Baglin, J. E. E., Gottschall, R. J., Batich, C. D., (Mater. Res. Soc. Proc. 119, Pittsburg, PA, 1988), p. 271.Google Scholar
[8] LeGoues, F.K., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technol. A6, 2200 (1988).Google Scholar
[9] Kondoh, E., Nguyen, T.P., Plachke, D.W., Carstanjenc, H., and Arzt, E., Appl. Phys. Lett., 10. 1251 (1997).Google Scholar
[10] Ghijsen, J., Tjeng, L.H., Elp, J.v., Eskes, H., Westerink, J., Sawatsky, G.A., and Czyzyk, M.T., Phys. Rev. B38, 11322 (1988).Google Scholar
[11] Ohuchi, F.S., Tjeng, L.H., Elp, J. v., Eskes, H., Westerink, J., Sawatsky, G.A., and Czyzyk, M.T., Phys. Rev. B38, 11322 (1988).Google Scholar
[12] Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., Handbook of X-ray Photoelectron Spectroscopy, (Perkin Elmer Corporation, Eden Prairie, Minnesota, 1978).Google Scholar
[13] Milosev, I., Strehblow, H.-H, Navinsek, B., and Metikos-Hukovic, M., Surface and Interface Analysis, 23, 529 (1995).Google Scholar
[14] Zielinski, E. M., Vinci, R. P., and Bravman, J. C., Appl. Phys. Lett., 67, 1078 (1995).Google Scholar