Skip to main content

Measured Displacement Energies of Oxygen Ions in Zirconolite and Rutile

  • Katherine L. Smith (a1) (a2), Ronald Cooper (a3), Michael Colella and Eric R. Vance (a1)

Optical emission spectra in the 300-700 nm range were collected from zirconolite and rutile specimens irradiated with a 3 μs pulsed electron beam using a Febetron 706 variable energy pulsed electronbeam generator. The long-lived emissions (up to microseconds after the electron pulse) consist of broad (halfwidths ~ 100 nm) bands centred around ~400 nm. Over the range 0.2 MeV to 0.6 MeV, the emission intensity per unit dose versus electron beam energy data from the rutile sample showed a single stage dependence on electron beam energy, whereas the zirconolite data suggested a two stage dependence. Rutile has a threshold of 0.23 ½ 0.02 MeV, which gives an Ed value of 39 ½ 4 eV for oxygen. Zirconolite has a threshold of 0.26 ½ 0.02 MeV, which gives an Ed value of 45 ½4 eV for oxygen. These data are discussed in the context of previously measured and calculated Ed values for other oxides.

Hide All
1.Ringwood, E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., “Immobilisation of high level nuclear reactor wastes in Synroc,” Nature (London), 278 (1979 219–23).
2.Weber, W.J., Turcotte, R. P. and Roberts, F. P., “Radiation Damage from Alpha Decay in Ceramic Waste Forms,” Radioactive Waste Management, 2 (1982) 295319.
3.Weber, W.J., Wald, J.W., and , Hj, , Matzke, J. Nucl. Mater. 138 (1986) 196.
4.Mitamura, H., Matsumoto, S., Stewart, M. W. A., Tsuboi, T., Hashimoto, M., Vance, E.R., Hart, K. P., Togashi, Y., Kanazawa, H., Ball, C. J. and White, T.J., J. Amer. Ceram. Soc., 77 (1994) 2255–64.
5.Clinard, F.W. Jr, Rohr, D.L., and Roof, R.B., Nucl. Instr. Meth. Phys. Res. B1 (1984) 581.
6.Vernaz, E., Loida, A., Malow, G., Marples, J. A. C. and Matzke, Hj., “Long-term Stability of High-level waste Forms,” Presented at 3rd European Community Conference on Radioactive Waste Management and Disposal,” Luxembourg, Sept 17-21, 1990.
7.Lumpkin, G.R. and Ewing, R.C., Phys. Chem. Minerals 16 (1988) 2.
8.Ewing, R.C. and Headley, T.J., J. Nucl. Mater. 119 (1983) 102.
9.Lumpkin, G.R., Ewing, R.C., Chakoumakos, B.C., Greegor, R.B., Lytle, F.W., Foltyn, E.M., Clinard, F.W. Jr., Boatner, L.A., and Abraham, M.M., J. Mater. Res. 1 (1986) 564.
10.Lumpkin, G.R., Smith, K.L., and Gieré, R., Micron 28 (1997) 57.
11.Lumpkin, G.R., Smith, K.L., Blackford, M.G., Gieré, R., and Williams, C.T., in: and (Eds.), Scientific Basis for Nuclear Waste Management, XXI, Mater. Res. Soc. Symp. Proc. 506 (1998) 215.
12.Lumpkin, G.R., Day, R.A., McGlinn, P.J., Payne, T.E., Gieré, R., and Williams, C.T., in: Wronkiewicz, D.J. and Lee, J.H. (Eds.), Scientific Basis for Nuclear Waste Management XXII, Mater. Res. Soc. Symp. Proc. 556 (1999) 793.
13.Ewing, R.C. and Wang, L.M., Nucl. Instr. Meth. Phys. Res. B65 (1992) 319.
14.Smith, K.L., Zaluzec, N.J., and Lumpkin, G.R., J. Nucl. Mater. 250 (1997) 36.
15.Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S., and Lumpkin, G.R., Nucl. Instr. Meth. Phys. Res. B148 (1999) 704.
16.Wang, S.X., Lumpkin, G.R., Wang, L.M., and Ewing, R.C., Nuc. Instruments and Methods in Phys. Res. B, 166–167 (2000) 293298.
17.Smith, K.L., Blackford, M.G., Lumpkin, G.R., and Zaluzec, N.J., Temperature dependence of ion irradiation induced amorphisation of zirconolite, Materials Research Society Fall 1999 Meeting, Symposium on the Scientific Basis for Nuclear Waste Management XXIII, Mat. Res. Soc. Symp. Proc., in press.
18.Cooper, R., Smith, K. L., Colella, M., Vance, E. R. and Phillips, M., Optical Emission due to ionic displacements in alkaline earth titanate. J. Nuc. Materials, in press.
19.Sonder, E. and Sibley, W.A., in: Point Defects in Solids. Vol. I. Ed. , J.H. Crawford Jr. and Slifkin, L.M. (Plenum, New York, 1972) p. 201.
20.Henderson, B., "Anion Vacancy Centers in Alkaline Earth Oxides"; C.R.C Crit.Rev.Solid State Mater. Sci.; 9; 1-60;[1980]
21.Caulfield, K.J., Cooper, R., and Boas, J.F., (1995) J Am Ceramics Soc., 78, 1054.
22.Evans, B.D. & Stapelbroek, M. "Optical Properies of the F+ Center in Crystalline Al2O3" Phys RevB, 18; 7089 [1978]
23.Humphreys, K.C. and Kantz, A.D., Radiat. Phys. Chem., 9 (1977) 737747.
24.Zinkle, S.J. and Kinoshita, C., Defect production in solids, J. Nucl. Mater. 251 (1997) 200217.
25.Williford, R.E., Devanathan, R. and Weber, W.J. (1998) Computer simulation of displacement energies for several ceramic materials, Nuc. Instruments and Methods in Phys Res B, 141 (1998) 9498.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 68 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st April 2018. This data will be updated every 24 hours.