Skip to main content

Mechanical Properties and Microarchitecture of Nanoporous Hydroxyapatite Bioceramic Nanoparticle Coatings on Ti and TiN

  • Andrei Stanishevsky (a1), Shafiul Chowdhury (a2), Nathaniel Greenstein (a3), Helene Yockell-Lelievre (a4) and Jari Koskinen (a5)...

The hydroxyapatite (HA) based bioceramic materials are usually prepared at high sintering temperatures to attain suitable mechanical properties. The sintering process usually results in a material which is compositionally and morphologically different from nonstoichiometric nano-crystalline HA phase of hard tissue. At the same time, HA particulates used as precursors in ceramic manufacturing are often very similar to the natural HA nanocrystals. It has been shown that synthetic nanoparticle HA (nanoHA) based materials improve the biological response in vitro and in vivo, but the information on mechanical properties of these materials is scarce.

In this work we studied the HA nanoparticle (10 – 80 nm mean size) coatings with 30 – 70% porosity prepared by a dip-coating technique on Ti and TiN substrates. It has been found that the mechanical properties of HA nanoparticle coatings are strongly influenced by the initial size, morphology, and surface treatment of nanoparticles. The nanoindentation Young's modulus and hardness of as–deposited nanoHA coatings were in the range of 2.5 – 6.9 GPa and 80 – 230 MPa, respectively. The coatings were stable after annealing up to at least 600 °C, reaching the Young's modulus up to 23 GPa and hardness up to 540 MPa, as well as in simulated body fluids.

Hide All
1. Arsenault, A.L., and Grynpas, M.D., Calcif. Tissue Int. 43, 219 (1988).
2. Danilchenko, S.N., Kukharenko, O.G., Moseke, C., Protsenko, I. Yu., Sukhodub, L.F., and Sulkio-Cleff, B., Cryst. Res. Technol. 37, 1234 (2002).
3. Kinney, J.H., Pople, J.A., Marshall, G.W., and Marshall, S J., Calcif. Tissue Int. 69, 31 (2001).
4. Zizak, I., Roschger, P., Paris, O., Misof, B.M., Berzlanovich, A., Bernstor, S.., Amenitsch, H., Klaushofer, K., and Fratzl, P., J. Structural Biology 141, 208 (2003).
5. Liu, D.-M., Yang, Q., and Troczynski, T., Biomat. 23, 691 (2002).
6. Yang, Y.C., Chang, E., and Lee, S.Y., J. Biomed. Mater. Res. A 67, 886 (2003).
7. Ben-Nissan, B., MRS Bull. 29, 28 (2004).
8. Catledge, S.A., Fries, M.D., Vohra, Y.K., Lacefield, W.R., Lemons, J.E., Woodard, S., and Venugopalan, R., J. Nanosci. Nanotechnol. 2, 293 (2002).
9. Suryanarayana, C., and Norton, M.G., X-ray diffraction, a practical approach (Plenum Press, New York 1998) pp.207222.
10. Hu, Z., Seeley, T., Kossek, S., and Thundat, T., Rev Sci Instrum.75, 400 (2004).
11. Chowdhury, S., Thomas, V., Dean, D., Catledge, S.A., and Vohra, Y.K., J. Nanosci. Nanotechnol. 5, 1816 (2005).
12. Oliver, W.C., and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).
13. Dufresne, E.R., Corwin, E.I., Greenblatt, N.A., Ashmore, J., Wang, D.Y., Dinsmore, A.D., Cheng, J.X., Xie, X.S., Hutchinson, J.W., and Weitz, D.A., Phys. Rev. Lett. 91, 224501-4 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed