Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T12:00:08.330Z Has data issue: false hasContentIssue false

Mechanism of Interfacial Coarsening in Molecular Beam Epitaxy Growth on (001) Surfaces

Published online by Cambridge University Press:  17 March 2011

Leonardo Golubovic
Affiliation:
Deparment of Physics, West Virginia University, Morgantown, WV 26506
Dorel Moldovan
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

We theoretically address epitaxial growth on (001) crystalline surfaces symmetry, in the regime when pyramids are formed across the growing interface due to Schwoebel step-edge barriers. We develop a kinetic scaling theory that analytically explains numerous experiments and simulations suggesting that pyramid size grows, via coarsening, as a fourth root of the deposition time. Pyramid dynamics is elucidated in terms of pyramid edges that form a growing self-organized square lattice across the growing interface. The edge lattice of pyramids is disordered by topological defects that are characterized here as dislocations. We show that pyramid coarsening is mediated by climb-motion of the dislocations of the edge lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ernst, H.-J., Fabre, F., Folkerts, R. and Lapujoulade, J., Phys. Rev. Lett. 72, 122 (1994); J. -K. Zuo and J. F. Wendelken, Phys. Rev. Lett. 78, 2791 (1997).Google Scholar
2.Johnson, M. D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M. and Orr, B.G., Phys. Rev. Lett. 72, 116 (1994).Google Scholar
3.Nostrand, J.E. Van, Chey, S.J., Hasan, M.-A., Cahill, D.G. and Greene, J.E., Phys. Rev. Lett. 74, 1127 (1995).Google Scholar
4.Stroscio, J.A., Pierce, D.T., Stiles, M., Zangwill, A. and Sander, L.M., Phys. Rev. Lett. 75, 4246 (1995).Google Scholar
5.Tsui, F., Wellman, J., Uher, C. and Clarke, R., Phys. Rev. Lett. 76, 3164 (1996).Google Scholar
6.Siegert, M. and Plischke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
7.Amar, J. and Family, F., Phys. Rev. B 54, 14742 (1996).Google Scholar
8.Siegert, M.,Physica A 239, 420 (1997); M. Siegert, Phys. Rev. Lett. 81, 5481 (1998).Google Scholar
9.Moldovan, D. and Golubovic, L., Phys. Rev. E 61, 6190 (2000).Google Scholar
10.Mullins, W.W., J. Appl. Phys. 28, 333 (1957).Google Scholar
11.Schwoebel, R.L., J. Appl. Phys. 40, 614 (1969); J. Villain, J. Phys. I (France) 1, 19 (1991).Google Scholar
12.Bartelt, M.C. and Evans, J.W., Phys. Rev. Lett. 75, 4250 (1995).Google Scholar
13.Golubovic, L. and Karunasiri, R.P.U., Phys. Rev. Lett. 66, 3156 (1991).Google Scholar
14.Golubovic, L., Phys. Rev. Lett. 78, 90 (1997).Google Scholar