Skip to main content Accessibility help

Metal vs. Polymer Electrodes in Organic Devices: Energy Level Alignment, Hole Injection, and Structure

  • N. Koch (a1) (a2), B. Nickel (a3), J. Ghijsen (a4), A. Elschner (a5), J. Schwartz (a3), J.-J. Pireaux (a4) and A. Kahn (a1)...


L We have investigated the electronic, structural, and charge injection properties of interfaces formed between three electroactive conjugated organic materials, i.e., N, N'-bis-(1-naphthyl)-N, N'-diphenyl1-1,1-biphenyl1-4,4'-diamine (á-NPD), pentacene, p-sexiphenyl, and two high work function electrode materials, i.e., gold and the conducting polymer poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). Ultraviolet photoelectron spectroscopy shows that the hole injection barrier between the three organic materials and PEDOT:PSS is lower by 0.6-1.0 eV as compared to Au, despite a similar work function of the pristine electrode material surfaces (ca. 5 eV). This very large difference is due to an effective change of the metal work function due to the deposition of organic molecules, i.e., a decrease of the Au surface dipole due to adsorption. Accordingly, model device structures built from á-NPD and pentacene on the two different electrode materials show much higher current densities for hole injection from PEDOT:PSS than from Au. Hole injection from Au for á-NPD devices is independent of deposition sequence and substrate. Pentacene devices exhibit significant asymmetries in that respect, due to a strong dependence of the morphology and preferred molecular orientation of the crystalline material on the substrate, as shown by atomic force microscopy and X-ray diffraction. Consequently, great care must be taken when modeling current-voltage characteristics of devices comprised of crystalline organic solids, especially when the influence of film thickness or different substrate materials is to be studied.



Hide All
1. Hill, I. G., Rajagopal, A., Kahn, A., and Hu, Y., Appl. Phys. Lett. 73 (5), 662 (1998).
2. Ishii, H. and Seki, K., IEEE Transactions on Electronic Devices 44, 1295 (1997).
3. Ishii, H., Sugiyama, K., Ito, E., and Seki, K., Adv. Mater. 11 (8), 605 (1999).
4. Crispin, X., Geskin, V., Crispin, A., Cornil, J., Lazzaroni, R., Salaneck, W. R., and Bredas, J. L., J. Am. Chem. Soc. 124 (27), 8131 (2002).
5. Cardona, M. and Ley, L., in Photoemission in Solids I, Topics in Applied Physics, edited by Cardona, M. and Ley, L. (Springer, Berlin, 1978), Vol. 26, pp. 16.
6. van, S. A. Slyke, Chen, C. H., and Tang, C. W., Appl. Phys. Lett. 15, 2160 (1996).
7. Halik, Marcus, Klauk, Hagen, Zschieschang, Ute, Kriem, Tarik, Schmid, Günter, Radlik, Wolfgang, and Wussow, Klaus, Appl. Phys. Lett. 81, 289 (2002).
8. Dimitrakopoulos, C. D. and Malenfant, P. R. L., Adv. Mater. 14 (2), 99 (2002).
9. Graupner, W., Grem, G., Meghdadi, F., Paar, Ch., Leising, G., Scherf, U., K. Müllen, Fischer, W., and Stelzer, F., Molecular Crystals and Liquid Crystals 256, 549 (1994).
10. Koch, N., Pogantsch, A., E. List, J.W., Leising, G., Blyth, R. I. R., Ramsey, M. G., and Netzer, F. P., Appl. Phys. Lett. 74 (20), 2909 (1999).
11. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., and Schlom, D. G., Appl. Phys. Lett. 71 (26), 3853 (1997).
12. Johnson, R.L. and Reichardt, J., Nucl. Instr. Methods 208, 719 (1983).
13. Hill, I. G., Rajagopal, A., and Kahn, A., J. Appl. Phys. 84, 3236 (1998).
14. Koch, N., Kahn, A., Ghijsen, J., Pireaux, J. J., Schwartz, J., Johnson, R. L., and Elschner, A., Appl. Phys. Lett. 82 (1), 70 (2003).
15. Koch, N., Elschner, A., Schwartz, J., and Kahn, A., Appl. Phys. Lett. 82, 2281 (2003).
16. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F., and Schlom, D. G., IEEE Electron Device Lett. 18 (3), 87 (1997).
17. Casalis, L.,Danisman, M. F., Nickel, B., Bracco, G., Toccoli, T., Iannotta, S., and Scoles, G., Phys. Rev. Lett., in press.
18. Dimitrakopoulos, C. D., Brown, A. R., and Pomp, A., J. Appl. Phys. 80 (4), 2501 (1996).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed