Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T10:14:14.209Z Has data issue: false hasContentIssue false

Microcracking, Strain Rate and Large Strain Deformation Effects in Molybdenum Disilicide

Published online by Cambridge University Press:  25 February 2011

D. A. Hardwick
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
P. L. Martin
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
Get access

Abstract

High purity molybdenum disilicide was deformed in compression to strains ranging from 5 to >50%. The deformation was accomplished at temperatures in the range 1200°-1400°C and at strain rates from 10−3 to 10−5 sec−1. The strength of this high purity material was found to be at least twice that of MoSi2 produced by the hot pressing of commercial powder. Microstructural examination revealed that subgrain formation resulted from modest strains (≈10%) while dynamic recrystallization was observed following large strains. Transmission microscopy revealed a significant change in the dislocation substructure after straining as the temperature was increased from 1300°C to 1400°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meschter, P. J. and Schwartz, D. S., JOM, 4 (11), 52 (1989).CrossRefGoogle Scholar
2. Meschter, P. J., Met. Trans A., 23A, 1763 (1992).Google Scholar
3. Aikin, R. M. Jr, Scripta Metall. Mater. 26, 1025 (1992).Google Scholar
4. Srinivasen, S. R., Schwartz, R. B. and Embury, J. D., Mat. Res. Soc. Proc. 288, (1993) pp 10991104.Google Scholar
5. Schlichting, J., High Temperatures-High Pressures, 10 (3), 241 (1978).Google Scholar
6. Patankar, S. N. and Lewandowski, J. J., Mat. Res. Soc. Proc. 288, (1993) pp 829834.Google Scholar
7. Cotton, J. D., Kim, Y. S. and Kaufmann, M. J., Mater. Sci. Eng., A144, 287 (1991).CrossRefGoogle Scholar
8. Maloy, S., Heuer, A. H., Lewandowski, J. J. and Petrovic, J. J., J. Am. Ceram. Soc., 74 (10), 2704 (1991).Google Scholar
9. Richerson, D. W., Amer. Ceram. Soc. Bull., 52 (7), 560 (1973).Google Scholar
10. Hardwick, D.A., Martin, P.L. and Moores, R.J., Scripta Metall. Mater., 27, 391 (1992).Google Scholar
11. Carter, D. H., Petrovic, J. J., Honnell, R. E. and Gibbs, W. S., Ceram. Eng. Sci. Proc., 10, 1121 (1989).Google Scholar
12. Hardwick, D. A., Martin, P. L., Patankar, S. N. and Lewandowski, J. J., in Proc.International Symposium on Structural Intermetallics, (1993) pp 665674.Google Scholar
13. Hirano, T., Nakamura, N., Kimura, K. and Umakoshi, Y., Ceram. Eng. Sci. Proc. 12 (9-10) 1619 (1991).Google Scholar
14. Maloy, S., Lewandowski, J. J. and Heuer, A. H., Mater. Sci. Eng., A155, 159 (1992).Google Scholar