Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T01:13:24.964Z Has data issue: false hasContentIssue false

Micro-Raman Study of Self-Assembled Nanostructures: (1−x)PZN:xPT Solid Solution

Published online by Cambridge University Press:  21 February 2011

S. Gupta
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR00931-3343, USA
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR00931-3343, USA
R. Guo
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, A16802, USA
A. S. Bhalla
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, A16802, USA
Get access

Abstract

Relaxor ferroelectrics are one of the important classes of self-assembled nanostructure composite materials. Interesting features associated with the nanoregions give rise to the most interesting device related characteristics and unusual properties in these materials. Besides, they possess the largest property coefficients by themselves or when modified with lead titanate (PT). In this report, a detailed temperature dependent study has been carried out on (1-x)PZN-xPT relaxors with compositions x = 0.05 and 0.085 using polarized Raman scattering under optical and E-field variables and inferred the structure-property relations in order to obtain information to characterize the material for matching the application criteria. In addition, phase transitions associated with the relaxors have also been investigated to understand the polarization mechanism(s) for the unpoled and poled specimens.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smolensky, G. A. et al., Ferroelectrics and Related Materials (Gordon and Breach, New York, 1984).Google Scholar
2. Cross, L. E., Ferroelectrics 76, 241 (1987).Google Scholar
3. Gupta, S., Katiyar, R. S. and Bhalla, A. S., Mater. Res. Symp. Proc. 457, 145 (1999).Google Scholar
4. Vughmeister, B. E. and Rabitz, H., Physical Rev. B 57, 1 (1998).Google Scholar
5. Bums, G. and Dacol, F. H., Ferroelectrics 104, 25 (1990).Google Scholar
6. Mathan, N. de, Husson, E., Galvarin, G., Gavarri, J. R., Hewat, A. W., and Morell, A., J. Phys.: Condens. Matter 3, 8159 (1991).Google Scholar
7. Westphal, V., Kleemann, W., and Glinchuk, M. D., Phys. Rev. Lett. 68, 847 (1992).Google Scholar
8. Sommer, R., Yushin, N. K., and Klink, J. J. Van der, Phys. Rev. B 48, 13 230 (1993).Google Scholar
9.For review pl. see Cheng, Z. Y. et al., Phys. Rev. B 57, 8166 (1998).Google Scholar
10. Khuchua, N. P., Bokov, V. A., and Myl'nikova, I. E., Sov. Phys.-Solid State 10, 192 (1965) and references therein.Google Scholar
11. Yokomizo, Y., Takahashi, T., and Nomura, S., Ferroelectrics 22, S63 (1979).Google Scholar
12.Powder Diffraction File, Card No. 22–663. International Center for Diffraction Data, Newtowne Square, PA, 1991.Google Scholar
13. Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 37, 863 (1981).Google Scholar
14. Nomura, S., Takahashi, T., and Yokomizo, Y., J.Phys. Soc. Japan 27, 262 (1969).Google Scholar
15. Kuwata, J., Uchino, K., and Nomura, S., Jpn. J Appl. Phys. 21, 1298 (1952).Google Scholar
16. Park, S.-E. and Shrout, T. R., J.Appl. Phys. 82, 1804 (1997).Google Scholar
17. Lin, S.-F., Park, S.-E., Shrout, T. R., and Cross, L. E., J. Appl. Phys. S5, 2810 (1999).Google Scholar
18. Siny, I., Lushnikov, S. and Katiyar, R. S. Phys. Rev. B 56, 7962 (1997).Google Scholar
19.For review pl. see Gupta, S., Katiyar, R. S. and Bhalla, A. S., Integrated Ferroleectrics (1999) (in Press).Google Scholar
20. Nomura, S., and Arima, H., Jpn.J.Appl. Phys. 11, 358 (1972).Google Scholar
21. Paik, D.-S., Park, S.-E., Wada, S., Liu, S.-F. and Shrout, T. R., J. Appl. Phys. S5, 1080 (1999).Google Scholar
22. Husson, E., Abello, L. and Morell, A., Mater. Res. Bull. 25, 539 (1990).Google Scholar
23. Tu, C.-S., Chao, F.-C., Yeh, C.-H., Tsai, C.-L. and Schmidt, V. H., Phys. Rev. B 60, 6348 (1999).Google Scholar
24. Lines, M. E. and Glass, A. M., in Principles and Applications of Ferroelectrics and Related Materials. (Oxford University Press, London 1977).Google Scholar