Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T08:41:03.447Z Has data issue: false hasContentIssue false

Mobility of Self-Interstitial Clusters in FE and CU

Published online by Cambridge University Press:  10 February 2011

Yu.N. Osetsky
Affiliation:
Materials Science and Engineering, Department of Engineering, The University of Liverpool, Liverpool, L69 3BX, UK (osetsky@liverpool.ac.uk). Russian Research Centre “Kurchatov Institute”, Kurchatov sq. 1, 123182 Moscow, Russia.
A. Serra
Affiliation:
Dept. Matemàtica Aplicada III, U. Politènica de Catalunya, Jordi Girona 1-3 (C-2), E-08034 Barcelona, Spain.
V. Priego
Affiliation:
Dept. Matemàtica Aplicada III, U. Politènica de Catalunya, Jordi Girona 1-3 (C-2), E-08034 Barcelona, Spain.
Get access

Abstract

Molecular dynamics (MD) simulation has been used to study the thermally activated mobility of clusters of self-interstitial atoms (SIAs) in Fe and Cu. Such clusters are formed in metals during irradiation with energetical particles and, according to the cascade production bias model, they play an important role in the microstructure evolution of metals under irradiation. An extensive simulation of clusters from 2 to 30 interstitials has been carried out for the temperature range ≍360-1200K using long-range interatomic pair potentials. The results show that clusters bigger than two SIAs are one-dimensionally mobile. Di-interstitials have two migration mechanisms depending on the temperature. At low temperature the mechanism is one-dimensional whereas at high temperature the probability of rotation and three-dimensional migration increases. It was found that in both metals the effective migration energy of clusters estimated via their jump frequency does not depend on the cluster size, although the cluster jump frequency decreases as the cluster size increases. The mechanism of cluster migration and problems of the treatment of one-dimensional mobility are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Woo, C.H. and Singh, B.N., Phys. Stat. Sol. (b),159, p.609 (1990); Philos.Mag.A65, p.889 (1992), B.N. Singh and A.J.E.Foreman, ibid., A66, p.975 (1992).Google Scholar
[2] Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J.Nuc.Mater, 199, p.5 (1992); ibid, 206, p. 200 (1993); B.N. Singh, S.I. Golubov, H. Trinkaus, A. Serra, Yu.N. Osetsky and A.V. Barashev, ibid, 251, p. 107 (1997).Google Scholar
[3] Bacon, D.J. and Rubia, T. Diaz de la, J. Nucl. Mater., 216, p.275 (1994); D.J. Bacon, A.F. Calder and F. Gao, ibid, 251, p. 1 (1997).Google Scholar
[4] Rubia, T. Diaz de la and Guinan, M., Phys. Rev. Lett., 66, p.2766 (1991); A.J.E.Foreman, W.J. Phythian and C.A. English, Philos. Mag., A, 66, p.651 (1992).Google Scholar
[5] Stoller, R., Odette, G.R. and Wirth, B.D., J.Nucl.Mater. 251, p.49 (1997); B.D. Wirth, G.R. Odette, D. Maroudas and G.E. Lucas, J.Nucl.Mater.,244, p. 185 (1997).Google Scholar
[6] Soneda, N. and Diaz de la Rubia, T., presented at Defect Production, Accumulation and Materials Performance in Irradiation Environment, International Workshop, Davos, Switzerland, October 2-8, 1996. To be published in Philos.Mag.A, (1998).Google Scholar
[7] Ingle, K.W., Perrin, R.C. and Schober, H.R., J.Phys.F: Metal.Phys., 11, p. 1161 (1981).Google Scholar
[8] Whiting, B.J. and Bacon, D.J., Mat.Res.Soc.Proc., 439, p. 389 (1997).Google Scholar
[9] Osetsky, Yu.N., Priego, V., Serra, A., Singh, B.N. and Golubov, S.I.. to be published in Philos.Mag. A (1998).Google Scholar
[10] Osetsky, Yu.N.., Mikhin, A.G. and Serra, A., Philos. Mag., A, 72, p.361 (1995).Google Scholar
[11] Ackland, G.J., Tichy, G., Vitek, V. and Finnis, M.V., Philos. Mag., A56, p. 735 (1987); G.J. Ackland, D.J. Bacon, A.F. Calder and T. Harry, Ibid., A75, p. 713 (1997).Google Scholar
[12] Osetsky, Yu.N., Serra, A. and Priego, V.. to be published in Philos.Mag.A (1998).Google Scholar
[13] Tsai, D.H., Bullough, R. and Perrin, R.C., J.Phys.C: Solid State Phys., 3, p. 2022 (1970); M.W. Guinan, R.N. Stuart and R.J. Borg, Phys.Rev., B15, p. 950 (1977).Google Scholar
[14] Osetsky, Yu.N., Serra, A., Priego, V., Gao, F. and Bacon, D.J., these proceedings.Google Scholar
[15] Allnatt, A.R. and Lidiard, A.B., Atomic Transport in Solids, (Cambridge University Press), 1993.Google Scholar
[16] Lomer, W.M. and Cottrell, A.H., Philos. Mag., 46, p.711 (1956).Google Scholar
[17] Johnson, R.A., Phys.Rev., A152, p. 1329 (1964).Google Scholar
[18] Bacon, D.J., J.Nucl.Mater., 1988, 159, p. 176; A.G. Mikhin, Yu.N. Osetsky and V.G. Kapinos, Philos.Mag., A70, p.25 (1994).Google Scholar
[19] Seeger, A., In Fundamental Aspects of Radiation Damage in Metals, Ed. by Robinson, M.T. and Young, F.W. Jr , vol. 1 (1985), p. 493; A. Seeger, H. Stoll and W. Frank, Mater. Sci. Forum., vol. 15-18, p. 237 (1987); Frank W. and Seeger A., ibid p.57.Google Scholar