Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T19:22:52.009Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Dislocation-Nucleated Etching of Silicon {111} Surfaces

Published online by Cambridge University Press:  15 February 2011

Donald L. Woodraska
Affiliation:
Michigan Technological University, Department of Physics, 1400 Townsend Dr., Houghton, MI 49931-1295.
Jason Lacosse
Affiliation:
Michigan Technological University, Department of Physics, 1400 Townsend Dr., Houghton, MI 49931-1295.
John A. Jaszczak
Affiliation:
Michigan Technological University, Department of Physics, 1400 Townsend Dr., Houghton, MI 49931-1295.
Get access

Abstract

We investigate equilibrium properties and thermal etching of the {111} surfaces of silicon, both with and without perpendicular intersecting dislocations, using Monte Carlo computer simulation. A modified solid-on-solid (SOS) approach is employed which realizes the correct diamond-cubic (DC) crystal structure. Nearest-neighbor interactions are incorporated to model the bonding, while the effects of a dislocation are incorporated by the addition of an energy field modeled as a core region and an elastic strained region. Dislocations are seen to nucleate the etching process and result in the formation of etch pits. Etch rates and etch-pit morphologies are investigated as a function of the chemical potential driving force for etching, the temperature, and the energy parameters used to model the dislocation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sherwood, J. N., Faraday Discuss. 95, 1 (1993).Google Scholar
2 Heimann, R. B.. In, Silicon Chemical Etching. Grabmaier, J., editor. (Springer-Verlag, Berlin, 1982).Google Scholar
3 National Research Council, Plasma Processing of Materials: Scientific Opportunities and Technological Challenges (National Academy Press, Washington, 1991).Google Scholar
4 Pakhomov, A. V. and Nadgorny, E. M., Bull. APS. 39(1), 930 (1994).Google Scholar
5 Orlov, Y. L., The Mineralogy of the Diamond (Wiley, New York, 1973) pp. 8287. Google Scholar
6 Weakliem, P. C., Wu, C. J., and Carter, E. A., Phys. Rev. Lett. 69, 200 (1992); L. E. Carter and E. A. Carter, Surf. Sci. 323, 39 (1995).Google Scholar
7 For reviews,see: Müller-Krumbhaar, H., in Monte Carlo Methods in Statistical Physics, ed. Binder, K. (Springer-Verlag, Berlin, 1986) p. 261; J. D. Weeks and G. H. Gilmer, Advances in Chemical Physics, 40, 157 (1979); J. P. van der Eerden and P. Bennema, Prog. Crystal Growth Charact. 1, 219 (1978).Google Scholar
8 Gilmer, G. H. and Bennema, P., J. Crystal Growth 13/14, 148 (1972).Google Scholar
9 Gilmer, G. H., J. Crystal Growth 35, 15 (1976).Google Scholar
10 Swendsen, R. H., Kortman, P. J., Landau, D. P. and Müller-Krumbhaar, H., J. Crystal Growth 35, 73 (1976).Google Scholar
11 Kohli, C. S. and Ives, M. B., J. Crystal Growth 16, 123 (1972).Google Scholar
12 Cheng, V. K. W. and Coller, B. A. W., J. Crystal Growth 84, 436 (1987).Google Scholar
13 Gilmer, G. H., J. Crystal Growth 42, 3 (1977).Google Scholar
14 Liu, G.-Z., Eerden, J. P. van der, and Bennema, P., J. Crystal Growth 58, 152 (1982) .Google Scholar
15 van der Hoek, B., van der Eerden, J. P., and Bennema, P., J. Crystal Growth 56, 621 (1981).Google Scholar
16 Jaszczak, J. A., Saam, W. F. and Yang, B., Phys. Rev. B 39, 9289 (1989).Google Scholar
17 Jaszczak, J. A., Saam, W. F., and Yang, B., Phys. Rev. B 41, 6864 (1990).Google Scholar
18 Nandedkar, A. S. and Narayan, J., Phil. Mag. A. 61, 873 (1990).Google Scholar
19 Wortis, M., in Chemistry and Physics of Solid Surfaces Vol. VII. Vanselow, R., editor. (Springer-Verlag, Berlin, 1988) p. 367. Google Scholar
20 Van Enckevort, W. J. P. and Van der Eerden, J. P., J. Crystal Growth, 47, 501 (1979).Google Scholar