Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T15:01:42.260Z Has data issue: false hasContentIssue false

Multi-Element Mercuric Iodide Detector Systems for X-Ray and Gamma-Ray Imaging

Published online by Cambridge University Press:  21 February 2011

Bradley E. Patt*
Affiliation:
Xsirius, Inc., 4640 Admiralty Way, Suite 214, Marina del Rey, CA 90292
Get access

Abstract

The advancement of room-temperature mercuric iodide detector technology to the point of spectroscopy-grade energy resolution coupled with the advancement in long-term stability and the high efficiency of these detectors now make it's use in large scale array systems for x- and gamma-ray imaging applications viable. Camera design criterion differ depending upon the application. A HgI2 gamma-ray camera developed at EG&G Energy Measurements has been used for imaging with various apertures, and the energy dispersive imaging aspects have been examined. Concepts for applications such as medical diagnostic imaging and a satellite based telescopes for x- and gamma-ray mapping have been objectified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Siffert, P., Mat. Res. Soc. Symp. Proc. V16, 87 (1983).Google Scholar
[2] Entine, G., Waer, P., Tiernan, T., and Squillante, M.R., Nucl. Instr. & Meth., A283, No.2 282 (1989).CrossRefGoogle Scholar
[3] Tsutsui, H., Ohtsuchi, T., Ohmori, K., and Baba, S., IEEE Trans. Nucl. Sci., V40, No.1, 40 (1993).Google Scholar
[4] Gerrish, V. and Berg, L. van den, Nucl. Instr. & Meth. A299, 41 (1990).CrossRefGoogle Scholar
[5] Patt, B. E., Duca, A. Del, Dolin, R., & Ortale, C., IEEE Trans. Nucl. Sci. NS–33, 523 (1986).Google Scholar
[6] Patt, B.E., Beyerle, A.G., Dolin, R.C., & Ortale, C., Nucl. Instr. & Meth., A283 215 (1989).CrossRefGoogle Scholar
[7] Iwanczyk, J.S., Dorri, N., Wang, M., Szczebiot, R.W., Dabrowski, A.J., Hedman, B., Hodgson, K.O., and Patt, B.E., IEEE Trans. Nucl. Sci., V39, No.5, (1992).Google Scholar
[8] Wang, Y.J., Iwanczyk, J.S., and Graham, W.R., Presented at the IEEE Trans. Nucl. Sci. Symp., Orlando, Florida, Oct. 25-31, 1992 (to be published).Google Scholar
[9] Gerrish, V., Nucl. Instr. & Meth. in Phys. Res., A322, 402 (1992)Google Scholar
[10] Iwanczyk, J.S., Schnepple, W.F., and Masterson, M.J., Nucl. Instr. & Meth. in Phys. Res., A322, 421 (1992)Google Scholar
[11] Iwanczyk, J.S., Dabrowski, A.J., Huth, G.C., Duca, A. del, and Schnepple, W.F., IEEE Trans. Nucl. Sci., NS28, No.1, 579 (1981).Google Scholar
[12] Warburton, W.K. and Iwanczyk, J.S., Nucl. Instr. & Meth. in Phys. Res., A254, 123, (1987).Google Scholar
[13] Yasillo, N.J., Beck, R.N., and Cooper, M., IEEE Trans. Nucl. Sci., V.37, No.2, 609 (1990).Google Scholar
[14] Patt, B.E, PhD thesis, University of California, Santa Barbara, 1993.Google Scholar
[15] Ortale, C., Padgett, L., & Schnepple, W. F., Nucl. Instr. & Meth., 213, 95 (1983).Google Scholar