Skip to main content

Nano-dispersed Particulate Ceramics in Poly-Lactide-Co-Glycolide Composites Improve Implantable Bone Substitute Properties

  • Huinan Liu (a1) and Thomas J. Webster (a2)

Metallic materials widely used in orthopedic applications have much stronger mechanical properties (such as elastic modulus) than natural bone, which can weaken the newly formed bone interface due to stress-shielding. Because natural bone is under continuous physiological stresses (such as compression, tension, torsion, and/or bending), the mechanical properties of orthopedic implant materials should closely match those of living bone. This is necessary to minimize stress and strain imbalances during physiological loading conditions which will lead to implant failure. The objective of the present study was to characterize the mechanical properties of PLGA with well-dispersed nanophase titania. The dispersion of titania in PLGA was controlled by sonication and was characterized by field emission scanning electron microscopy and image analysis. For this purpose, two major stresses (compression and tension) that natural bone experiences under physiological loading conditions were characterized using an Instron Material Testing System. The results showed that nano-dispersed titania particles in PLGA increased the compressive and tensile modulus of such scaffolds compared to pure PLGA scaffolds and the more agglomerated ceramics in PLGA scaffolds. The mechanisms behind these results were also speculated. Since the predominant feature of nano-particles lies in their ultra-fine dimension, a large fraction of filler atoms can reside at the PLGA-ceramic interface which can lead to a stronger interfacial interaction, but only if the nano-particles are well dispersed at the nanometer level in the surrounding polymer matrix. As the interfacial PLGA-ceramic structure plays a critical role in determining the mechanical properties of composites, nano-composites with a great number of smaller interfaces could be expected to provide unusual properties, and the shortcomings induced by the heterogeneity of conventional (or micron) particle filled composites would also be avoided. Therefore, coupled with prior studies demonstrating greater osteoblast functions, the combination of PLGA with a strong and biocompatible well-dispersed nano-ceramic phase may provide better candidate materials for orthopedic applications.

Hide All
[1] Liu, H, Slamovich, EB, Webster, TJ. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. Journal of Biomedical Materials Research 2006; 78A(4):798807.
[2] Traykova, T, Aparicio, C, Ginebra, MP, Planell, JA. Bioceramics as nanomaterials. Nanomed. 2006; 1(1):91106.
[3] Webster, TJ, Siegel, RW, Bizios, R. Osteoblast adhesion on nanophase ceramics. Biomaterials 1999; 20(13):12211227.
[4] Webster, TJ, Ergun, C, Doremus, RH, Siegel, RW, Bizios, R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000; 21(17):18031810.
[5] Fung, YC. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, pp. 500519, 1993.
[6] Liu, H, Slamovich, EB, Webster, TJ. Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine. 2006; 1(4):541545.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed