Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T20:35:18.327Z Has data issue: false hasContentIssue false

Nano-engineering by MeV Ion Beams

Published online by Cambridge University Press:  01 February 2011

Yogendra Kumar Mishra
Affiliation:
ykmnsc@gmail.com, Inter University Accelerator Centre, Materials Science Group, Post Box 10502, Aruna Asaf Ali Marg, New Delhi, 110067, India, +91-11-26893955, +91-11-26893666
Devesh Kumar Avasthi
Affiliation:
dka@iuac.ernet.in, Inter University Accelerator Centre, Materials Science Group, Asaf Ali Marg, Post Box -10502, New Delhi, 110067, India
Fouran Singh
Affiliation:
fouran@gmail.com, Inter University Accelerator Centre, Materials Science Group, Asaf Ali Marg, Post Box -10502, New Delhi, 110067, India
Jean Claude Pivin
Affiliation:
pivin@csnsm.in2p3.fr, CSNSM, IN2P3-CNRS, Batiment 108, Orsay Campus, F-91405, France
Eckhard Pippel
Affiliation:
epip@mpi-halle.mpg.de, Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, Halle, D-06120, Germany
Get access

Abstract

Thin silica films embedded with Au nanoparticles (NPs) were prepared by atom beam co-sputtering and RF-magnetron sputtering. The growth kinetics of Au NPs in atom beam co-sputtered film, under 90 MeV Ni ion irradiation, was studied by in-situ X ray diffraction experiment in the materials science beam line at IUAC, New Delhi. The growth of NPs from 4 nm (for pristine) to 9 nm at a fluence of 1 × 1014 ions/cm2 was observed with rapid growth upto the size track diameter, however slowed beyond it. 120 MeV Au ion irradiation of RF magnetron sputtered films resulted in the elongation of Au NPs along ion beam direction. The aspect ratio of elongated NPs (Au nanorods) is found to be ∼3.5, which mainly depends on the electronic energy deposited within the system. Hence the present work reports that the ion irradiation is an effective tool for tailoring the size, shape and size distribution of NPs. The results are discussed in the framework of thermal spike model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yin, Y. and Alivisatos, P., Nature 437, 664 (2005).10.1038/nature04165Google Scholar
2 Ozbay, Ekmel, Science 311, 189 (2006).10.1126/science.1114849Google Scholar
3 Ikeda, K., Kobayashi, K., and Fujimoto, M., J. Appl. Phys. 92, 5395(2002).10.1063/1.1510562Google Scholar
4 Alivisatos, Paul, Nature Biotechnology 22, 47 (2003).10.1038/nbt927Google Scholar
5 Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J., Nature 382, 607 (1996).10.1038/382607a0Google Scholar
6 Kreibig, U. & Volmer, M., Optical Properties of Metal Clusters: Springer Series in Materials Science 25; Springer: Berlin 1995.10.1007/978-3-662-09109-8Google Scholar
7 Biswas, A., Aktas, O. C., Schurmann, U., Saeed, U., Zaporojtchenko, V., Faupel, F., and Strunskus, T., Appl. Phys. Lett. 84, 2655 (2004).10.1063/1.1697626Google Scholar
8 Avasthi, D. K., Mishra, Y. K., Kabiraj, D., Lalla, N. P. and Pivin, J. C., Nanotechnology 18, 125604 (2007).10.1088/0957-4484/18/12/125604Google Scholar
9 Schürmann, U., Hartung, W., Takele, H., Zaporojtchenko, V. and Faupel, F., Nanotechnology 16, 1078 (2005).10.1088/0957-4484/16/8/014Google Scholar
10 Kreibig, U. and Fragstein, C. V., Z. Phys. 224, 307 (1969).10.1007/BF01393059Google Scholar
11 Kreibig, U., Phys, J.. F: Metal Phys 4, 999 (1974).Google Scholar
12 Kelly, K. Lance, Coronado, E., Zhao, L. L. and Schatz, G.C., J. Phys. Chem. B. 107, 668 (2003)10.1021/jp026731yGoogle Scholar
13 Raether, H., Surface Plasmons (Springer, Berlin, 1998).Google Scholar
14 Mishra, Y. K., Mohapatra, S., Kabiraj, D., Mohanta, B., Lalla, N. P., Pivin, J. C. and Avasthi, D. K., Scripta Mater. 56, 629 (2007).Google Scholar
15 Mishra, Y. K., Mohapatra, S., Avasthi, D. K., Kabiraj, D., Lalla, N. P., Pivin, J. C., Sharma, H., Rajarshi Kar and Neeta Singh, Nanotechnology 18, 345606 (2007).10.1088/0957-4484/18/34/345606Google Scholar
16 Mishra, Y. K., Kabiraj, D., Sulania, I., Pivin, J. C. and Avasthi, D. K., Jour. of Nanosci. & Nanotech. 7, 1878 (2007).Google Scholar
17 Mishra, Y. K., Mohapatra, S., Kabiraj, D., Tripathi, A., Pivin, J. C. and Avasthi, D. K., J. Opt. A: Pure Appl. Opt. 9, S410 (2007).10.1088/1464-4258/9/9/S21Google Scholar
18 Daniel, M. Christine and Astruc, D., Chem. Rev. 104, 293 (2004)Google Scholar
19 D'Orleans, C., Stoquert, J. P., Estourne's, C., Cerruti, C., Grob, J. J., Guille, J. L., Haas, F., Muller, D., and Richard-Plouet, M., Phys. Rev. B 67, 220101 (R) (2003).10.1103/PhysRevB.67.220101Google Scholar
20 Roorda, S., Dillen, T. V., Polman, A., Graf, C., Blaaderen, A. V. and Kooi, B. J., Adv. Mater. 16, 235 (2004).Google Scholar
21 Penninkhof, J. J., Graf, C., Dillen, T. V., Vredenberg, A. M., Blaaderen, A. V. and Polman, A., Adv. Mater. 17, 1484 (2005).10.1002/adma.200401742Google Scholar
22 Oliver, A., A, J.. Esqueda, R., Wong, J. C. C., Velázquez, C. E. R., Sosa, A. C., Fernandez, L. R., Seman, J. A., and Noguez, Cecilia, Phys. Rev. B 74, 245425 (2006).10.1103/PhysRevB.74.245425Google Scholar
23 Mishra, Y. K., Avasthi, D. K., Kulriya, P. K., Singh, F., Kabiraj, D., Tripathi, A., Pivin, J. C., Bayer, I. S. and Biswas, A., Appl. Phys Lett. 90, 73110 (2007).10.1063/1.2642824Google Scholar
24 Mishra, Y. K., Singh, F, Avasthi, D. K., Pivin, J. C., Malinovska, D., Pippel, E., Appl. Phys. Lett. 91, 063103 (2007).10.1063/1.2764556Google Scholar
25 Doolittle, R., Nucl. Instr. and Meth. B, 9, 291 (1985).10.1016/0168-583X(85)90762-1Google Scholar
26 Ziegler, J. F., Biersack, Z. P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamum, New York, 1985) [www.srim.org]Google Scholar
27 Li, W.-H., Wu, S.Y., yang, C.C., Lai, S. K. and Lee, K. C., Phys. Rev. Lett. 89, 135504 (2002).10.1103/PhysRevLett.89.135504Google Scholar
28 Meftah, A., Brisard, F., Costantini, M., Dooryhee, E., Hage-Ali, M., Hervieu, M., Stoquert, J. P., Studer, F., and Toulemonde, M., Phys. Rev. B 49, 12457 (1994).10.1103/PhysRevB.49.12457Google Scholar
29 Toulemonde, M., Costantini, J. M., Dufour, Ch., Meftah, A, Paumier, E., and Studer, F., Nucl. Instr. and Meth. B 116, 37 (1996).10.1016/0168-583X(96)00007-9Google Scholar
30 Klaumunzer, S., Hou, M. D. and Schumacher, G., Phys. Rev. Lett. 57, 850 (1986).10.1103/PhysRevLett.57.850Google Scholar
31 Srivastva, S. K., Avasthi, D. K., and Pippel, E., Nanotechnology 17, 2518 (2006).Google Scholar
32 Brongersma, M. L., Snoeks, E. and Polman, A., Appl. Phys. Lett. 71, 1628 (1997).10.1063/1.119999Google Scholar
33 Brongersma, M. L., Snoeks, E. and Polman, A., J. Appl. Phys. 88, 59 (2000).10.1063/1.373624Google Scholar
34 Pivin, J. C., Roger, G., Garcia, M. A., Singh, F., and Avasthi, D. K., Nucl. Instr. and Methods B 215 (2004) 373.10.1016/j.nimb.2003.07.002Google Scholar