Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T04:58:21.038Z Has data issue: false hasContentIssue false

Nanoparticles and Nanocomposites in RF Plasma

Published online by Cambridge University Press:  17 March 2011

Jin Cao
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University University Park, PA 16802, U.S.A.
Themis Matsoukas
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University University Park, PA 16802, U.S.A.
Get access

Abstract

The use of low pressure radio-frequency (rf) plasma for nanoparticle formation and the deposition of thin film on particulate substrates are reported. Plasma polymer particles are synthesized in a capacitively-coupled Ar/monomer discharge at rf power of 15-30 W. A variety of particle structures are observed, including monodispersed nanospheres and liquid-like viscous nano-droplets. Styrene in particular is observed to produce hollow nanospheres. By manipulating the process parameters, films of plasma polymers can be deposited onto suspended submicron particles. We take advantage of the electrostatic trapping of “dusty plasma” to suspend small particles in plasma for extended periods of time until the desired coating thickness is achieved. Sub-micron silica particles introduced into a low pressure rf Ar/monomer plasma are coated with film of thickness ranging from 2 to 70 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. PROGIL, U. K. Patent, GB 1,269,018 (1972).Google Scholar
2. Grill, A., Cold Plasma in Materials Fabrication, (IEEE Press, 1994) pp.180.Google Scholar
3. Matsuda, Y. and Yasuda, H., Thin Solid Films, 118, 211 (1984).Google Scholar
4. Biederman, H. and Osada, Y., Adv. Polym. Sci., 95, 57 (1990).Google Scholar
5. Liepins, R. and Yasuda, H., J Appl. Polym. Sci., 15, 2957 (1971).Google Scholar
6. Nomura, H., Kramer, P. W., and Yasuda, H., Thin Solid Films, 118, 187 (1984).Google Scholar
7. Sadhir, R. K., James, W. J., and Auerbach, R. A., Thin Solid Films, 97, 17 (1982).Google Scholar
8. Schreiber, H. P., Wertheimer, M. R., and Wrobel, A. M., Thin Solid Films, 72, 487 (1980).Google Scholar
9. Weikart, C. M., Miyama, M., and Yasuda, H. K., J. Colloid Interface Sci., 211, 18 (1999).Google Scholar
10. Weikart, C. M., Miyama, M., and Yasuda, H. K., J. Colloid Interface Sci., 211, 28 (1999).Google Scholar
11. Yasuda, H., Plasma Polymerization, (Academic, 1985) pp.277-333, pp.238250.Google Scholar
12. Liepins, R. and Sakaoku, K., J. Appl. Polym. Sci., 16, 2633 (1972).Google Scholar
13. Kobayashi, H., Bell, A. T., and Shen, M., J. Appl. Polym. Sci., 17, 885 (1973).Google Scholar
14. Nakayama, M., Morita, H., and Kubota, Y., U.S. patent, US 4,810,524 (1989).Google Scholar
15. Vollath, D., Seith, B., and Szabó, V., German patent, DE 19,638,601 (1998).Google Scholar
16. Lieberman, M. A. and Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing, (Wiley, 1994) pp.16.Google Scholar
17. Bæuf, J. –P. and Punset, C., Physics and modeling of dusty plasmas, Dusty Plasmas, ed. Bouchoule, A. (Wiley, 1999) pp.2739.Google Scholar
18. Nitter, T., Plasma Sources Sci. Technol., 5, 93 (1996).Google Scholar