Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T17:00:02.364Z Has data issue: false hasContentIssue false

Nanoscale Modification Of Amorphous Diamond-Like Carbon Film Surfaces

Published online by Cambridge University Press:  10 February 2011

T. W. Mercer
Affiliation:
Drexel University, Department of Physics and Atmospheric Science, Philadelphia, PA 19104
N. J. Dinardo
Affiliation:
Drexel University, Department of Physics and Atmospheric Science, Philadelphia, PA 19104 University of Pennsylvania, Department of Materials Science and Engineering, Philadelphia, PA 19104
J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
L. J. Martinez-Miranda
Affiliation:
University of Maryland, Department of Electrical and Nuclear Engineering, College Park, MD 20742
Get access

Abstract

Scanning Tunneling and Atomic Force Microscopy (STM, AFM) of amorphous tetrahedral carbon films (a-tC) film surfaces grown by pulsed laser deposition indicate extreme flatness and uniform electronic properties.1 This is consistent with the observed predominance of sp3 (diamond-like) bonding in these materials.2 Potential applications of a-tC films may be enhanced with the ability to modify their surfaces on the nanoscale. Exploiting the metastable nature of the sp3 hybridized state of carbon, the high flux electron beam from an STM tip was used to modify ˜100 nm regions; processing in air or in vacuum produces similar results. STM and AFM maps of the modified regions indicate stable morphologic and electronic structures consistent with a local transformation to sp2 (graphitic) hybridization. Surface potentiometric mapping of these regions indicates a correlation between electron dose and a lowering of the surface potential. In addition, spatially-resolved electron energy loss spectroscopy of the modified areas performed with a Scanning Auger Microscope shows plasmon energy shifts that confirm an elevated sp2 content in the modified regions.3

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mercer, T. W., DiNardo, N. J., Martinez-Miranda, L. J., Fang, F., Friedmann, T. A., Sullivan, J. P. and Siegal, M. P., in Materials Research Society Symposium on Microcrystalline and Nanocrystalline Semiconductors Collins, C. B., Tsai, C. C., Hirose, M., Koch, F., Brus, L., Eds. (Materials Research Society, Boston, MA, 1994), pp. 863.Google Scholar
2. Siegal, M. P., Friedmann, T. A., Kurtz, S. R., Tallant, D. R., Simpson, R. L., Dominguez, F. and McCarty, K. F., in Mater. Res. Soc. Proc. (Materials Research Society, San Francisco, 1994), pp. 507.Google Scholar
3. Mercer, T. W., Rothman, J., Siegal, M. P., Sullivan, J. P., Friedmann, T. R., Martinez-Miranda, L. J. and DiNardo, N. J., in preparation (1995).Google Scholar
4. Geis, Michael W. and Angus, John C., Sci. Am. Oct. 92, 84 (1992).Google Scholar
5. Geis, Michael W. and Tamor, Michael A., in Encyclopedia of Applied Physics 5, (VCH Publishers, Inc., 1993), pp. 1.Google Scholar
6. Xie, Chengang, Kumar, Nalin, Collins, C. B., Lee, T. J., Howard Schmidt and Suhas Wagal, Proc. International Vacuum Microelectronics Conference, RI, USA (1993).Google Scholar
7. Angus, John C. and Hayman, Cliff C., Science 241, 913 (1988).Google Scholar
8. Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., You, J. H., Park, H., Pivin, J. C., Glejbøl, K. and Thölén, A. R., J. Appl. Phys. 72, 239 (1992).Google Scholar
9. Pappas, David. L., Saenger, Katherine L., Bruley, John, Krakow, William and Cuomo, Jerome J., J. Appl. Phys. 71, 5675 (1992).Google Scholar
10. Fulin Xiong, Wang, Y. Y., Leppert, V. and Chang, R. P. H., J. Mater. Res. 8, 2265 (1993).Google Scholar
11. Galli, Giulia, Martin, Richard M., Car, Roberto and Parrinello, Michele, Phys. Rev. Lett. 62, 555 (1989).Google Scholar
12. Drabold, D. A., Fedders, P. A. and Stumm, Petra, Phys. Rev. B 49, 16415 (1994).Google Scholar
13. Becker, R. S., Higashi, G. S., Chabal, Y. J. and Becker, A. J., Phys. Rev. Lett. 65, 1917 (1990).Google Scholar
14. Staufer, U., Scandella, L. and Wiesendanger, R., Z. Phys. B - Condensed Matter 77, 281 (1989).Google Scholar
15. Friedmann, T. A., McCarty, K. G., Barbour, J. C., Siegal, M. P. and Dibble, Dean C., unpublished (1995).Google Scholar