Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T18:50:32.879Z Has data issue: false hasContentIssue false

New Multilayer Architectures for Piezoelectric BaTiO3 Cantilever Systems

Published online by Cambridge University Press:  12 July 2011

Giuseppe Vasta
Affiliation:
School of Electronic Electrical and Computer Engineering, University of Birmingham, B15 2TT Birmingham, United Kingdom
Timothy J. Jackson
Affiliation:
School of Electronic Electrical and Computer Engineering, University of Birmingham, B15 2TT Birmingham, United Kingdom
James Bowen
Affiliation:
Department of Chemical Engineering, University of Birmingham, B15 2TT Birmingham, United Kingdom
Edward J. Tarte
Affiliation:
School of Electronic Electrical and Computer Engineering, University of Birmingham, B15 2TT Birmingham, United Kingdom
Get access

Abstract

The fabrication and characterization of released cantilevers in new multilayer thin films architectures is reported. In contrast to previous works, the cantilevers are produced without etching of the substrate and are based on lead free piezoelectric materials. The three architectures are: SrRuO3/BaTiO3/MgO/SrTiO3/YBa2Cu3O7, SrRuO3/BaTiO3/SrRuO3/YBa2Cu3O7 and SrRuO3/BaTiO3/SrRuO3/SrTiO3/YBa2Cu3O7. It is shown that the different architectures allow a choice of the orientation of the polar axis in piezoelectric layers, in plane (d33 mode) or out of plane (d31 mode). Both configurations may be utilized in piezoelectric energy harvesting devices. Released cantilevers with the above layer sequences have been produced with lengths ranging from, 100 μm to 250 μm. The residual stress after the release of the cantilevers produces an upward bending, the distance between the cantilever tips and the substrate varies between 20 μm and 45 μm. This distance would allow the sufficient vibration amplitude to enable the cantilevers to be used as micro-generators. Measurements of Young Modulus of the cantilevers and of polarization hysteresis loop are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choi, W. J., Jeon, Y., Jeong, J. H., Sood, R. and Kim, S. G., J. Electroceram. 17, 543548 (2006).Google Scholar
2. Lu, F., Lee, H. P., and Lim, S. P., Smart. Mater. Struct. 13, 5763 (2004).Google Scholar
3. Jeon, Y. B., Sood, R., Jeong, J. H., Kim, S. G., Sens. Act. A 122, 1622 (2005).Google Scholar
4. Zhang, Q. Q., Gross, S. J., Tadigadapa, S., Jackson, T. N., Djuth, F. T., Trolier-McKinstry, S. Sens. Act. A 105, 9197 (2003).Google Scholar
5. Sato, H., Roesthuis, F. J. G., Sonnenberg, A. H., Rijnders, A. J. H. M., Rogalla, H. and Blank, D. H. A., Supercond. Sci. Technol. 13, 522526 (2000).Google Scholar
6. Smilde, H. J. H., Hilgenkamp, H., Gerritsma, G. J., Blank, D. H. A. and Rogalla, H., IEEE Trans. Appl. Supecond. 11, 501504 (2001).Google Scholar
7. Pellegrino, L., Biasotti, M., Bellingeri, E., Bernini, C., Siri, A. S. and Marre`, D., Adv. Mater. 21, 23772381 (2009).Google Scholar
8. Wu, X. D., Foltyn, S. R., Dye, R. C., Coulter, Y. and Muenchausen, R. E., Appl. Phys. Lett. 62, 24342436 (1993).Google Scholar
9. Choi, K. J., Biegalski, M., Li, Y. L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y. B. Pan, X. Q., Gopalan, V., Chen, L. Q., Schlom, D. G., Eom, C. B., Science 306, 10051009 (2004).Google Scholar