Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T12:42:56.296Z Has data issue: false hasContentIssue false

New Thermoelectric Arsenides and Antimonides for High Temperature Applications

Published online by Cambridge University Press:  01 February 2011

Hong Xu
Affiliation:
h22xu@uwaterloo.ca, University of Waterloo, Waterloo, N2L 3G1, Canada
Navid Soheilnia
Affiliation:
soheiln@uwaterloo.ca, University of Waterloo, Waterloo, N2L 3G1, Canada
Huqin Zhang
Affiliation:
huqinz@CLEMSON.EDU, Clemson University, Clemson, SC, 29634-0978, United States
Paola N. Alboni
Affiliation:
palboni@clemson.edu, Clemson University, Clemson, SC, 29634-0978, United States
Terry M. Tritt
Affiliation:
ttritt@clemson.edu, Clemson University, Clemson, SC, 29634-0978, United States
Holger Kleinke
Affiliation:
kleinke@uwaterloo.ca, University of Waterloo, Waterloo, N2L 3G1, Canada
Get access

Abstract

Three different materials crystallizing in the cubic Ir3Ge7 type are under investigation in our group, namely Mo3(Sb,Te)7, Nb3(Sb,Te)7, and Re3(E,As)7 (with E = Si, Ge, Sn). Our electronic structure calculations reveal a band gap to occur at 55 valence-electrons in all three cases, namely Mo3Sb5Te2, Nb3Sb2Te5, and Re3EAs6. Cubic holes exist in these structures that may be filled with small cations such as 3d transition metal atoms. Ni0.06Mo3Sb5.4Te1.6 is a degenerate p-type semiconductor that reaches ZT = 0.96 at 750°C, while Re3Ge0.6As6.4 is a degenerate n- type semiconductor with slightly lower ZT values. Preliminary results indicate that the Re3(Sn,As)7 system may be the most promising of the rhenium arsenides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, J., Caillat, T., Mat. Res. Bull. 31, 224229 (2006).Google Scholar
2. Ioffe, A. F, Physics of Semiconductors, Academic Press, New York City, NY, 1960.Google Scholar
3. Rowe, D. M, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL, 1995.Google Scholar
4. Tritt, T. M, Science 283, 804805 (1999).Google Scholar
5. DiSalvo, F. J, Science 285, 703706 (1999).Google Scholar
6. Chung, D.-Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M. G, Science 287, 10241027 (2000).Google Scholar
7. Sales, B. C., Mandrus, D., Williams, R. K, Science 272, 13251328 (1996).Google Scholar
8. Brown, S. R, Kauzlarich, S. M, Gascoin, F., Snyder, G. J, Chem. Mater. 18, 18731877 (2006).Google Scholar
9. Hsu, K. F, Loo, S., Guo, F., Chen, W., Dyck, J. S, Uher, C., Hogan, T., Polychroniadis, E. K, Kanatzidis, M. G, Science 303, 818821 (2004).Google Scholar
10. Dashjav, E., Szczepenowska, A., Kleinke, H., J. Mater. Chem. 12, 345349 (2002).Google Scholar
11. Brown, A., Nature 206, 502503 (1965).Google Scholar
12. Hässermann, U., Elding-Pontén, M., Svensson, C., Lidin, S., Chem. Eur. J. 4, 10071015 (1998).Google Scholar
13. Gascoin, F., Rasmussen, J., Snyder, G. J, J. Alloys Compd. 427, 324329 (2007).Google Scholar
14. Soheilnia, N., Dashjav, E., Kleinke, H., Can. J. Chem. 81, 11571163 (2003).Google Scholar
15. Zhang, H., He, J., Zhang, B., Su, Z., Tritt, T. M, Soheilnia, N., Kleinke, H., J. Electron. Mater. 36, 727731 (2007).Google Scholar
16. Wang, S., Snyder, G. J, Caillat, T., Proc. Intern. Conf. Thermoelectr. 21, 170172 (2002).Google Scholar
17. Soheilnia, N., Giraldi, J., Assoud, A., Zhang, H., Tritt, T. M, Kleinke, H., J. Alloys Compd., in press (2007).Google Scholar
18. Larson, A. C, Dreele, R. B. von, Los Alamos National Laboratory: Los Alamos, NM, 2000.Google Scholar
19. Andersen, O. K, Phys. Rev. B 12, 30603083 (1975).Google Scholar
20. Skriver, H. L, The LMTO Method, Springer, Berlin, Germany, 1984.Google Scholar
21. Hedin, L., Lundqvist, B. I, J. Phys. C 4, 20642083 (1971).Google Scholar
22. Blöchl, P. E., Jepsen, O., Andersen, O. K, Phys. Rev. B 49, 1622316233 (1994).Google Scholar
23. Soheilnia, N., Xu, H., Zhang, H., Tritt, T. M, Swainson, I., Kleinke, H., Chem. Mater. 19, 40634068 (2007).Google Scholar
24. Furuseth, S., Kjekshus, A., Acta Chem Scand. 20, 245250 (1966).Google Scholar
25. Jensen, P., Kjekshus, A., J. Less-Comm. Met. 13, 357359 (1967).Google Scholar
26. Jensen, P., Kjekshus, A., Skansen, T., J. Less-Common Met. 17, 455458 (1969).Google Scholar