Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T19:06:17.925Z Has data issue: false hasContentIssue false

Nitrogen-Doping Induced Optical Bandgap Widening of P-Type Cu2O Flms

Published online by Cambridge University Press:  31 January 2011

Yoshitaka Nakano
Affiliation:
nakano@isc.chubu.ac.jp, TOYOTA Central R&D Laboratories, Inc., Nagakute, Japan
Shu Saeki
Affiliation:
s-saeki@mosk.tytlabs.co.jp, TOYOTA Central R&D Laboratories, Inc., Nagakute, Japan
Takeshi Morikawa
Affiliation:
morikawa@mosk.tytlabs.co.jp, TOYOTA Central R&D Laboratories, Inc., Nagakute, Aichi, Japan
Get access

Abstract

We have investigated the effect of N doping into Cu2O films deposited by reactive magnetron sputtering. With increasing N-doping concentration up to 3 at.%, the optical bandgap energy is enlarged from ˜2.1 to ˜2.5 eV with retaining p-type conductivity as determined by optical absorption and Hall-effect measurements. Additionally, photoelectron spectroscopy in air measurements shows an increase in the valence and conduction band shifts with N doping. These experimental results demonstrate possible optical bandgap widening of p-type N-doped Cu2O films, which is a phenomenon that is probably associated with significant structural changes induced by N doping, as suggested from x-ray diffraction measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Grondahl, L. O., Rev. Mod. Phys. 5, 141 (1933).Google Scholar
2 Porat, O. and Riess, I., Solid State Ionics 81, 29 (1995).Google Scholar
3 Nolan, M. and Elliott, S. D., Phys. Chem. Chem. Phys. 8, 5350 (2006).Google Scholar
4 Herion, J., Niekisch, E. A., and Scharl, G., Sol. Energy Mater. 4, 101 (1980).Google Scholar
5 Mittiga, A., Salza, E., Sarto, F., Tucci, M., and Vasanthi, R., Appl. Phys. Lett. 88, 163502 (2006).Google Scholar
6 Hara, M., Kondo, T., Komoda, M., Ikeda, S., Kondo, J. N., Domen, K., Shinohara, K., and Tanaka, A., Chem. Commun. 3, 357 (1998).Google Scholar
7 Siripala, W., Ivanovskaya, A., Jaramillo, T. F., Baeck, S.-H., and McFarland, E. W., Sol. Energy Mater. Sol. Cells 77, 229 (2003).Google Scholar
8 Tachibana, Y., Muramoto, R., Matsumoto, H., and Kuwabata, S., Res. Chem. Intermed. 32, 575 (2006).Google Scholar
9 Kudo, A., Yanagi, H., Hosono, H., and Kawazoe, H., Appl. Phys. Lett. 73, 222 (1998).Google Scholar
10 Nie, X., Wei, S.-H., and Zhang, S. B., Phys. Rev. B 65, 075111 (2002).Google Scholar
11 Buljan, A., Llunell, M., Ruiz, E., and Alemany, P., Chem. Mater. 13, 338 (2001).Google Scholar
12 Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., Science 293, 269 (2001).Google Scholar
13 Nakano, Y., Morikawa, T., Ohwaki, T., and Taga, Y., Appl. Phys. Lett. 86, 132104 (2005).Google Scholar
14 Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K., Appl. Phys. Lett. 81, 454 (2001).Google Scholar
15 Diwald, O., Thomson, T. L., Zubkov, T., Goralski, E. G., Walck, S. D., and Yates, J. T. Jr. , J. Phys. Chem. B 108, 6004 (2004).Google Scholar
16 Sakthivel, S. and Kisch, H., Angew. Chem. Int. Ed. 42, 4908 (2003).Google Scholar
17 Ishizuka, S., Kato, S., Maruyama, T., and Akimoto, K., Jpn. J. Appl. Phys. 40, 2765 (2001).Google Scholar
18 Balamurugan, B., Aruna, I., Mehta, B. P., and Shivaprasad, S. M., Phys. Rev. B 69, 165419 (2004).Google Scholar
19 Sayama, K., Mukasa, K., Abe, R., Abe, Y., and Arakawa, H., Chem. Commun. 23, 2416 (2001).Google Scholar