Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T22:03:02.477Z Has data issue: false hasContentIssue false

A Novel Class of Carbon Nanocones

Published online by Cambridge University Press:  15 March 2011

Svetlana Dimovski
Affiliation:
Department of Materials Engineering, Drexel University, Philadelphia, PA 19104, U.S.A.
Joseph A. Libera
Affiliation:
Mechanical Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, U.S.A.
Yury Gogotsi
Affiliation:
Department of Materials Engineering, Drexel University, Philadelphia, PA 19104, U.S.A. Mechanical Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, U.S.A.
Get access

Abstract

A new class of low-angle conical carbon crystals has been described and their characteristics are reported here. These carbon nanocones were found in pores of a glassy carbon (GC) along with cylindrical multiwall nanotubes and graphite polyhedral crystals. The largest cones reach 2 to 3 microns in length, although most are in the submicron range. Scanning Electron Microscopy (SEM) reveals cones protruding from the inner pore surfaces with the tips oriented toward the inside of the pores. Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED) show that cones are made of thick (up to several hundred layers), highly-ordered graphitic walls. Their tips are graphitic as well, and exhibit a dome-like morphology. These cones also differ from any carbon cones observed earlier in that they have a much smaller apex angle, sometimes less than 3°. Small angle carbon nanocones can potentially be used for probes and field emission elements.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Krishnan, A., Dujardin, E., Treacy, M. M. J., Hugdahl, J., Lynum, S., and Ebbesen, T.W., Nature 388, 451 (1997).Google Scholar
2 Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H.W., and Sarkar, A., Carbon 33 (7), 873 (1995); Klaus Sattler, Carbon 33 (7), 915 (1995).Google Scholar
3 Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Takahashi, K., Chemical Physics Letters 309 (3-4), 165 (1999).Google Scholar
4 Terrones, H., Hayashi, T., Munoz-Navia, M., Terrones, M., Kim, Y. A., Grobert, N., Kamalakaran, R., Dorantes-Davila, J., Escudero, R., Dresselhaus, M. S., and Endo, M., Chemical Physics Letters 343 (3-4), 241 (2001).Google Scholar
5 Saito, Y., Carbon 33 (7), 979 (1995).Google Scholar
6 Gogotsi, Y., Libera, J.A., Kalashnikov, N., and Yoshimura, M., Science 290, 317 (2000).Google Scholar
7 Harris, P.J.F. and Tsang, S.C., Philos. Mag. A 76, 667 (1997); P. J. F. Harris, Intl. Mat. Rew. 42 (5), 206 (1997); P.J.F. Harris, A. Burian, and S. Duber, Philos. Mag. Lett. 80 (6), 381 (2000).Google Scholar
8 Fialkov, A.S. in Carbon, intercalation compounds and composites on its base (in Russian), (Aspect Press, Moscow, 1997).Google Scholar
9 Gogotsi, Y., Grystal Growth and Design 1 (3), 179 (2001).Google Scholar
10 Amelinckx, S., Acta Crystallogr. A52, 850 (1996).Google Scholar
11 Bourgeois, L., Bando, Y., Kurashima, K., and Sato, T., (The International Symposium on Carbon Proceedings, Tokyo, Japan, 1998) pp. 6061 Google Scholar
12 Ugarte, D., Chem. Phys. Lett. 198, 596 (1992).Google Scholar
13 Iijima, S., Mater. Sci. Eng. B 19, 172 (1993).Google Scholar
14 Sarkar, A., Kroto, H.W., and Endo, M., Carbon 33 (1), 51 (1995).Google Scholar
15 Ebbesen, T. W. and Takada, T., Carbon 33 (7), 973 (1995).Google Scholar
16 Grobert, N., Mayne, M., Terrones, M., Sloan, J., Dunin-Borkowski, R.E., Kamalakaran, R., Seeger, T., Terrones, H., Ruhle, M., Walton, D.R.M., Kroto, H.W., and Hutchison, J.L., Chem. Commun. 5, 471 (2001).Google Scholar
17 Libera, J. and Gogotsi, Y., Carbon 39, 1307 (2001).Google Scholar
18 Saito, Y. and Yoshikawa, T., J. Crystal Growth 134, 154 (1993); Gogotsi, Y., Libera, J. A. and Yoshimura, M., in Applications of Fullerenes, edited by Osawa, E. and Nakazawa, T. (Kluwer, Dordrecht, 2001).Google Scholar
19 Chadderton, L.T. and Chen, Y., Physics Letters A 263 (4-6), 401 (1999).Google Scholar
20 Pinheiro, P., Schouler, M. C., Gadelle, P., Mermoux, M., and Dooryhee, E., Carbon 38 (10), 1469 (2000).Google Scholar