Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T11:03:44.095Z Has data issue: false hasContentIssue false

A Novel Ruthenium Precursor for MOCVD without Seed Ruthenium Layer

Published online by Cambridge University Press:  11 February 2011

Tetsuo Shibutami
Affiliation:
TOSOH Corporation, Tokyo Research Center, 2743–1, Hayakawa, Ayase-shi, Kanagawa 252–1123, Japan
Kazuhisa Kawano
Affiliation:
TOSOH Corporation, Tokyo Research Center, 2743–1, Hayakawa, Ayase-shi, Kanagawa 252–1123, Japan
Noriaki Oshima
Affiliation:
TOSOH Corporation, Tokyo Research Center, 2743–1, Hayakawa, Ayase-shi, Kanagawa 252–1123, Japan
Shintaro Yokoyama
Affiliation:
Department of Innovative and Engineered Materials Interdisciplinary Graduated School of Science and Engineering Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa226–8502, Japan
Hiroshi Funakubo
Affiliation:
Department of Innovative and Engineered Materials Interdisciplinary Graduated School of Science and Engineering Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa226–8502, Japan
Get access

Abstract

Ruthenium thin films were deposited on SiO2/Si substrates at 275 – 400 °C by metalorganic chemical vapor deposition (MOCVD) using liquid precursor (2.4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium [Ru(DMPD)(EtCp) DMPD: 2.4-dimethylpentadienyl EtCp: etylcyclopentadienyl]. Deposition characteristics of the films were compared with those using bis(ethylcyclopentadienyl)ruthenium.

The decomposition temperature of Ru(DMPD)(EtCp) was 80 °C lower than Ru(EtCp)2. Both films consisted of Ru single phase for all deposition temperature range and showed an resistivity bellow 20 μΩcm for the films deposited above 300 °C. The initial nucleation of Ru films from Ru(DMPD)(EtCp) precursor was smaller in size and denser than that from Ru(EtCp)2. The deposition process from Ru(DMPD)(EtCp) has much shorter incubation time than that from Ru(EtCp)2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Green, M. L., Gross, M. E., Papa, L. E., Schnoes, K. J., and Brasen, D., J. Electrochem. Soc, 132, 2677(1985).Google Scholar
2. Lee, J. M., Chin, J. C., Hwang, C. S., Kim, H. J., and Suk, C. G., J. Vac Sci. Technol. A, 16, 2768(1998).Google Scholar
3. Vetrone, J., Foster, C. M., Bai, G. R., Wang, A., Patel, J., and Wu, X., J. Mater. Res., 8, 2281(1998).Google Scholar
4. Lee, J. H., Kim, J. Y., Rhee, S. W., Yang, D. Y.. Kim, D. H., Yang, C. H., Han, Y. K., and Hwang, C. J., J. Vac. Sci. Technol. A, 18, 2400(2000).Google Scholar
5. Lee, J. H., Kim, J. Y., and Rhee, S. H., J. Electrochem. Solid-State Lett., 4, C9 (2001).Google Scholar
6. Aoyama, T., and Eguchi, K., Jpn. J. Appl. Phys., 38, L1134(1999).Google Scholar
7. Kang, S. Y., Choi, K. H., Lee, S. K., Hwang, C. S., and Kim, H. K., J. Electrochem. Soc, 147, 1161(2000).Google Scholar
8. Matsui, Y., Hiratani, M., Nabatame, T., Shimamoto, Y., and Kimura, S., Electrochem. Solid-State Lett, 4, C9(2001).Google Scholar
9. Kadoshima, M., Nabatame, T., Hiratani, M., and Nakamura, Y., Jpn. J. Appl. Phys., 41, L347(2002).Google Scholar