Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T08:08:34.373Z Has data issue: false hasContentIssue false

The occupancy of the threading dislocation lines within n-type gallium nitride: Recent progress

Published online by Cambridge University Press:  13 April 2012

Erfan Baghani
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Stephen K. O’Leary
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Get access

Abstract

Within the framework of a grand partition function formalism, we examine the occupancy of the dangling bond dislocation defect sites and the VGa-ON dislocation defect sites within uncompensated n-type gallium nitride. The sensitivity of these results to variations in the unoccupied dislocation defect energy level is examined. We find that the VGa-ON dislocation defect sites’ greater capacity to store charge plays a large role in influencing the results, i.e., greater free electron and bulk donor concentrations are required in order to fully saturate the threading dislocation lines with charge.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
2. Morkoç, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
3. Foutz, B. E., O’Leary, S. K., Shur, M. S., and Eastman, L. F., J. Appl. Phys. 85, 7727 (1999).Google Scholar
4. O’Leary, S. K., Foutz, B. E., Shur, M. S., and Eastman, L. F., J. Electron. Mater. 32, 327 (2003).Google Scholar
5. O’Leary, S. K., Foutz, B. E., Shur, M. S., and Eastman, L. F., J. Mater. Sci: Mater. Electron. 17, 87 (2006).Google Scholar
6. Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 67, 1541 (1995).Google Scholar
7. Ponce, F. A., Krusor, B. S., Major, J. S. Jr., Plano, W. E., and Welch, D. F., Appl. Phys. Lett. 67, 410 (1995).Google Scholar
8. Look, D. C., and Sizelove, J. R., Phys. Rev. Lett. 82, 1237 (1999).Google Scholar
9. Baghani, E. and O’Leary, S. K., J. Appl. Phys. 109, 113706 (2011).Google Scholar
10. Baghani, E. and O’Leary, S. K., J. Appl. Phys. 110, 033509 (2011).Google Scholar
11. Weimann, N. G., Eastman, L. F., Doppalapudi, D., Ng, H. M., and Moustakas, T. D., J. Appl. Phys. 83, 3656 (1998).Google Scholar
12. Gurusinghe, M. N. and Andersson, T. G., Phys. Rev. B 67, 235208 (2003).Google Scholar
13. Wu, X. H., Brown, L. M., Kapolnek, K., Keller, S., Keller, B., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 80, 3228 (1996).Google Scholar
14. Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000).Google Scholar
15. Leung, K., Wright, A. F., and Stechel, E. B., Appl. Phys. Lett. 74, 2495 (1999).Google Scholar
16. Lee, S. M., Belkhir, M. A., Zhu, X. Y., Lee, Y. H., Hwang, Y. G., and Frauenheim, T., Phys. Rev. B 61, 16033 (2000).Google Scholar
17. You, J. H., Lu, J.-Q., and Johnson, H. T., J. Appl. Phys. 99, 033706 (2006).Google Scholar
18. Cherns, D., Jiao, C. G., Mokhtari, H., Cai, J., and Ponce, F. A., Phys. Status Solidi B 234, 924 (2002).Google Scholar