Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T11:49:46.991Z Has data issue: false hasContentIssue false

Optical Properties of Lanthanide Metal Ion Polymer Complexes

Published online by Cambridge University Press:  15 February 2011

Yoshi Okamoto
Affiliation:
Department of Chemistry and Polymer Institute, Polytechnic University, Brooklyn, NY, U.S.A.
Junji Kido
Affiliation:
Department of Material Science and Engineering, Yamagata University, Yamagata, Japan.
Get access

Abstract

The fluorescent characteristics of lanthanide chelates are of considerable interest in connection with electronic energy transfer processes and with their use in laser systems. We have synthesized various chelating groups, such as diketone and bypyridyl containing polymers and prepared their Tb3+ and Eu3+ complexes. Their fluorescent properties in connection with a possible laser action were investigated.

Electroluminscence (EL) in organic compounds has been investigated from fundamental as well as practical point of views. Various organic dyes were utilized as emitter materials in EL devices. In these examples, owing to the broad nature of the luminescence spectra of organic dyes, the luminescent colors are dull. We have utilized lanthanide metal ion complexes as a luminescent emitter.

Tb and Eu ion complexes emitted sharp green and red light, respectively. The configuration of the EL cell and experimental results are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weissman, S.I., J. Chem. Phys., 10, 214 (1942).Google Scholar
2. Heller, A. and Wasserman, E., J. Chem. Phys., 42, 949 (1965); S.P. Tanner and D.L. Thomas, J. Am. Chem. Soc., 96, 706 (1974).Google Scholar
3. Crosby, G.A., Whan, R.E. and Alire, R.M., J. Chem. Phys., 1, 743 (1961); E.P. Riedel and R.G. Charles, J. Chem. Phys., 45, 1908 (1966); H. Samelson, A. Lempicki, V.A. Brophy and C Brecher, J. Chem. Phys., 40, 2547 (1964).Google Scholar
4. Schmitschek, E.J., Nehrich, R.B. and Trias, J.A., J. Chem. Phys., 64, 673 (1967).Google Scholar
5. Brecher, C., Samelson, H. and Lempicki, A., J. Chem. Phys., 4.2, 1081 (1965).Google Scholar
6. Wolff, N.E. and Ressley, R.J., Appl. Phys. Lett., 2, 152 (1963).Google Scholar
7. Huffman, E.H., Nature 200, 158 (1963).Google Scholar
8. Okamoto, Y., Wang, S.S., Zhu, K.J., Banks, E., Garetz, B. and Murphy, E.K., in Metal Containing Polymeric Systems. Eds. Sheats, J., Carreher, C.E. and Pittman, C.U. Jr. (Plenum Press, New York, 1985), pp. 425450.Google Scholar
9. Drexhage, K.H., in Topics in Applied Physics: Dye Lasers. Ed. Schafer, F.P. (Springer, New York, 1977).Google Scholar
10. Gold, H., in Chemistry of Synthetic Dyes. Ed. Venkataraman, K. (Academic Press, New York, 1971), vol.5, p. 535.Google Scholar
11. Helfrich, W. and Schneider, W.G., Phys. Rev. Lett. 14, 229 (1965).CrossRefGoogle Scholar
12. Partridge, R.H., Polymer, 24, 773 (1983).Google Scholar
13. Vincett, P.S., Barlow, W.A., Hann, R.A. and Roberts, G.G., Thin Solid Films 94, 171 (1982).CrossRefGoogle Scholar
14. Roberts, G.G., McGinneity, M., Barlow, W.A. and Vincett, P.S., Solid State Comm. 32, 683 (1979).CrossRefGoogle Scholar
15. Era, M., Hayashi, S., Tsutsui, T. and Saito, S., J. Chem. Soc., Chem. Comm. 577 (1985).Google Scholar
16. Tang, C.W. and Van Slyke, S.A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
17. Tang, C.W., Van Slyke, S.A. and Chen, C.H., J. Appl. Phys. 65, 3610 (1989).Google Scholar
18. Adachi, C., Tokito, S., Tsutsui, T. and Saito, S., Jpn. J. Appl. Phys. 27, L269 (1988).Google Scholar
19. Adachi, C., Tsutsui, S. and Saito, S., Appl. Phys. Lett. 55, 1489 (1989).Google Scholar
20. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., MacKay, K., Friend, R.H., Burns, P.L. and Holmes, A.B., Nature 24., 593 (1991).Google Scholar
21. Bradley, D.D.C., Brown, A.R., Burns, P.L., Burroughes, J.H., Friend, Ri, Holmes, A.B., MacKay, K.D. and Marks, R.N., Syn. Metals Al, 3135 (1991).Google Scholar
22. Braun, D. and Heeger, A.J., Appl. Phys. Lett. 5E, 1982 (1991).CrossRefGoogle Scholar
23. Okamoto, Y., Ueba, Y., Dzhanibecov, N.F. and Banks, E., Macromolecules 14, 17 (1981).CrossRefGoogle Scholar
24. Nagata, I. and Okamoto, Y., Macromolecules 16, 749 (1983).CrossRefGoogle Scholar
25. Okamoto, Y. and Kido, J., in Macromolecular Complexes Dynamic Interaction and Electronic Processes. Ed. Tsuchida, E. (VCH Publ., New Ylork, 1991). Chapt. 3.3.Google Scholar
26. Kido, J., Nagai, K. and Ohashi, Y., Chem. Lett. 657 (1990).Google Scholar
27. Kido, J., Nagai, K., Skotheim, T. and Okamoto, Y., Chem. Lett. 1267 (1991).Google Scholar
28. Kido, J., Nagai, K., Skotheim, T. and Okamoto, Y., Appl. Phys. Lett. 59, 2760 (1991).Google Scholar