Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T22:13:15.880Z Has data issue: false hasContentIssue false

Optical Properties of Self-Organized InGaAs/GaAs Quantum Dots in Field-Effect Structures

Published online by Cambridge University Press:  09 August 2011

A. Babinski
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
T. Tomaszewicz
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
A. Wysmolek
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
J. M. Baranowski
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
C. Lobo
Affiliation:
EME Dept, RSPhysSE, ANU, Canberra ACT 0200, Australia
R. Leon
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099
C. Jagadish
Affiliation:
EME Dept, RSPhysSE, ANU, Canberra ACT 0200, Australia
Get access

Abstract

The results of photoluminescence (PL) and electroreflectance (ER) measurements on InGaAs/GaAs self-organized quantum dots (QDs) in field-effect structure are presented. It has been found that the QDs PL can be completely quenched in reversely biased structure both at room temperature and at T=4.2K. A non-monotonic dependence of QDs PL peak energy with applied bias is observed at low temperature, which is attributed to the band-gap re-normalization due to QDs charging and size distribution effects. The electric field dependence of the QDs ER feature at room temperature has been analysed. A red shift of that feature with increasing electric field has been observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Drexler, H., Leonard, D., Hansen, W., Phys. Rev. Lett. 73, 2252 (1994)Google Scholar
2. Miller, B. T., Hansen, W., Manus, S., Luyken, R. J., Lorke, A., Kotthaus, J. P., Huant, S., Medeiros-Ribeiro, G., Petroff, P. M., Phys. Rev. B 56, 6764 (1997); G. Medeiros-Ribeiro, D.Leonard, P. M.Petroff, Appl. Phys. Lett. 66, 1767 (1995); G.Medeiros-Ribeiro, F. G. Pikus, P. M.Petroff, A. L.Efros, Phys. Rev. B 55, 1568 (1997)Google Scholar
3. Warburton, R. J., Dürr, C. S., Karrai, K., Kotthaus, J. P., Medeiros-Ribeiro, G., P. M. Petroff, Phys. Rev. Lett. 79, 5282 (1997)Google Scholar
4. Schmidt, K. H., Medeiros-Ribeiro, G., Petroff, P. M., Phys. Rev. B 58, 3597 (1998)Google Scholar
5. Babinski, A., Wysmolek, A., Tomaszewicz, T., Baranowski, J. M., Leon, R., Lobo, C., Jagadish, C., Appl. Phys. Lett. 73, 2811 (1998)Google Scholar
6. Lobo, C. and Leon, R., J. Appl. Phys. 83, 4186 (1998)Google Scholar
7. Warburton, R. J., Dürr, C. S., Karrai, K., Kotthaus, J. P., Medeiros-Ribeiro, G., Petroff, P. M., Phys. Rev. Lett. 79, 5282 (1997)Google Scholar
8. Leon, R., Kim, Yong, Jagadish, C., Gal, M., Zou, J., Cockayne, D. J. H., Appl. Phys. Lett. 69, 1888 (1996)Google Scholar
9. Lobo, C., Leon, R., Fafard, S., Piva, P. G., Appi. Phys. Lett. 72, 2850 (1998)Google Scholar
10. Bastard, G., Mendez, E. E., Chang, L. L., Esaki, L., Phys. Rev. B 28, 3241 (1983)Google Scholar
11. Wojs, A., Hawrylak, P., Phys. Rev. B 55, 13066 (1997)Google Scholar
12. Aleshkin, V. Ya., Zvonkov, B. N., Malkina, I. G., Lin'kova, E. R., Karpovich, I. A., Filatov, D. O., in Proc. 23rdlnt. Conf. Phys. Semicond., edited by Scheffler, M. and Zimmermann, R., (World Scientific, Singapore 1996), p. 1397 Google Scholar