Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T03:41:32.110Z Has data issue: false hasContentIssue false

Optically Detected Magnetic Resonance of Arsenic Antisites in GaAs MBE Layers Grown at Low Temperatures

Published online by Cambridge University Press:  15 February 2011

F. C. Rong
Affiliation:
Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
L. Fotiadis
Affiliation:
Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
H.-J. Sun
Affiliation:
Sherman Fairchild Laboratory, Lehigh University, Bethlehem, PA 18015
G. D. Watkins
Affiliation:
Sherman Fairchild Laboratory, Lehigh University, Bethlehem, PA 18015
M. A. Taysing-Lara
Affiliation:
Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
J. Flemish
Affiliation:
Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
W. H. Chang
Affiliation:
Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
Get access

Abstract

Observation of Arsenic antisites (AsGa) in GaAs layers grown by molecular beam epitaxy (MBE) at low substrate temperatures (∼ 200°C) is reported, using electron paramagnetic resonance (EPR), magnetic circular dichroism in absorption (MCDA), and MCDA tagged by optically detected magnetic resonance (MCDA-ODMR). This experiment confirms that there is a MCD absorption band directly associated with AsGa in the GaAs layers. The AsGa concentration in the GaAs layers is found to decrease by about one order of magnitude after annealing at 600°C for two minutes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a)

Current address: GEO-Centers, Inc., c/o U.S. Army Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703; work performed at U.S. Army Electronics Technology and Devices Laboratory, Fort Monmouth, New Jersey.

References

REFERENCES

1Smith, F. W., Calawa, A. R., Chen, C. L., Manfra, M. J., and Mahoney, L. J., IEEE Electron Device Lett. EDL–9, 77 (1988).10.1109/55.2046Google Scholar
2Smith, F. W., Le, H. O., Diadiuk, V., Hollis, M. A., Calawa, A. R., Gupta, S., Frankel, M., Dykaar, D. R., Mourou, G. A., and Hsiang, T. Y., Appl. Phys. Lett. 54, 890 (1989).10.1063/1.100800Google Scholar
3Baranowski, J. M., Liliential-Weber, Z., Yau, W.-F., and Weber, E. R., Phys. Rev. Lett. 66, 3079 (1991).10.1103/PhysRevLett.66.3079Google Scholar
4Eaglesham, D. J., Pfeiffer, L. N., West, K. W., and Dykaar, D. R., Appl. Phys. Lett. 58, 65 (1991).10.1063/1.104446Google Scholar
5Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., smith, F. W., Tsaur, B-Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).10.1063/1.101229Google Scholar
6Ahlers, F. J., Lohse, F., Spaeth, J.-M., and Mollenauer, L. F., Phys. Rev. B 28, 1249 (1983).10.1103/PhysRevB.28.1249Google Scholar
7Meyer, B. K., Spaeth, J.-M., and Scheffler, M., Phys. Rev. Lett. 52, 851 (1984).10.1103/PhysRevLett.52.851Google Scholar
8Jeon, D. Y., Gislason, H. P., Donegan, J. F., and Watkins, G. D., Phys. Rev. B 36, 1324 (1987).10.1103/PhysRevB.36.1324Google Scholar
9Meyer, B. K., Hofmann, D. M., Niklas, J. R., and Spaeth, J.-M., Phys. Rev. B 36, 1332 (1987).10.1103/PhysRevB.36.1332Google Scholar
10Hofmann, D. M., Meyer, B. K., Lohse, F., and Spaeth, J.-M., Phys. Rev. Lett. 53, 1187 (1984).10.1103/PhysRevLett.53.1187Google Scholar
11Kaminska, M. and Weber, E. R., Materials Science Forum 83–87, 1033 (published by Trans. Tech. Publications Ltd., Aedermannsdorf, Switzerland, 1992).Google Scholar