Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:01:37.167Z Has data issue: false hasContentIssue false

Optically Pumped GaN-AlGaN Double-Heterostructure Lasers Grown by ECR-GSMBE and HVPE

Published online by Cambridge University Press:  21 February 2011

P. A. Maki
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, MA 02173-9108
R. J. Molnar
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, MA 02173-9108
R. L. Aggarwal
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, MA 02173-9108
Z-L. Liau
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, MA 02173-9108
I. Melngailis
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, MA 02173-9108
Get access

Abstract

We have observed laser emission with well-defined cavity modes in optically pumped GaN-Al0.1Ga0.9N double-heterostructure (DH) lasers. The laser structures were grown using an electron-cyclotron-resonance nitrogen-discharge source and gas-source molecular beam epitaxy (ECR-GSMBE) on thick (≥10 µm) GaN buffers grown by hydride vapor-phase epitaxy (HVPE) on c-plane sapphire. Transversely pumped cavities using a 337.1 nra nitrogen laser pump source exhibit a threshold pump fluence ranging from 0.15 to 0.3 mJ/cm2 at 77 K, a linear light output above threshold, a lasing wavelength of 358 nm, and an estimated differential quantum efficiency of 1%. The room-temperature threshold is about 1.7 times higher. Longitudinal mode structure has been resolved in a shorter-cavity (23 µn) device at 77 K. The measured mode spacing of 0.56 nm corresponds to a group index of 5.0. Far-field measurements in a plane perpendicular to the plane of the heterostructure indicate a double-lobed pattern for a 1000 Ǻ thick GaN active region, and a single lobe with a FWHM of 60° for a 4000 Ǻ active region. The thick HVPE GaN buffer layer provides for a lattice-matched growth and results in improved nucleation in MBE, as indicated by a high-quality reflection-electron-diffraction pattern of the as-loaded wafers. The surface morphology of the MBE layers on the HVPE buffer shows improved optical smoothness as compared to layers grown directly on sapphire using a low-temperature, MBE-grown GaN buffer. Laser facets were formed either by saw cutting or cleaving of the GaN buffer and epilayer along crystal planes. Details of the material development and laser performance are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1678 (1994).Google Scholar
2 Yang, X. H., Schmidt, T. J., Shan, W., Song, J. J., and Goldenbert, B., Appl. Phys. Lett. 66, 1 (1995).Google Scholar
3 Zubrilov, A. S., Nikolaev, V. I., Tsvetkov, D. V., Dmitriev, V. A., Irvine, K. G., Edmond, J. A., and Carter, C. H. Jr., Appl. Phys. Lett. 67, 533 (1995).Google Scholar
4 Amano, H., Asahi, T., and Akasaki, I., Jpn. J. Appl. Phys. 29, 205 (1990).Google Scholar
5 Akasaki, I., Amano, H., Koide, N., Kotaki, M., and Manabe, K., Physica B 185, 428 (1993).Google Scholar
6 Amano, H., Watanabe, N., Koide, N., and Akasaki, I., Jpn. J. Appl. Phys. 32, 1000 (1993).Google Scholar
7 Khan, M. A., Krishnankutty, S., Skogman, R. A., Kuznia, J. N., Olson, D. T., and George, T., Appl. Phys. Lett. 65, 520 (1994).Google Scholar
8 Yung, K., Yee, J., Koo, J., Rubin, M., Newman, N., and Ross, J., Appl. Phys. Lett. 64, 1135 (1994).Google Scholar
9 Molnar, R. J., Nichols, K. B., Maki, P., Brown, E. R., and Melngailis, I., Mater. Res. Soc. Symp. Proc. 378, 479 (1995).Google Scholar
10 Lin, M. E., Sverdlov, B., Zhou, G. L., and Morkoç, H., Appl. Phys. Lett. 62, 3479 (1993).Google Scholar
11 Molnar, R. J., Singh, R., and Moustakas, T. D., J. Electron. Mater. 24, 275 (1995).Google Scholar
12 Ejder, E., Phys. Status Solidi 6, 445 (1971).Google Scholar