Skip to main content

Origin of the multi-exponential decay dynamics in light-emitting silicon nanocrystals

  • Cécile Reynaud (a1), Olivier Guillois (a1), Nathalie Herlin-Boime (a1), Gilles Ledoux (a2) (a3) and Friedrich Huisken (a3)...

Light-emitting silicon nanocrystals (nc-Si) have attracted much interest due to their importance for optoelectronic devices. Electron hole recombination in a quantum confined system is generally considered as the theoretical frame explaining the photoluminescence (PL) origin. However, there is still a living debate, in particular regarding the PL decay dynamics. The decay is not single exponential and decay curves described by a stretched exponential law were systematically reported for all types of nanocrystalline silicon. The origin of this multi-exponential decay is often attributed to migration effects of the excitons between nanocrystals. In contrast to these approaches, the absence of carrier hopping has been demonstrated experimentally in porous silicon. In order to elucidate this question, specific samples were prepared, consisting in deposits made from gas phase grown silicon nanocrystals with different particle density. The nanoparticles were synthesized by laser pyrolysis of silane in a gas flow reactor, extracted as a supersonic beam, size-selected, and deposited downstream as films of variable densities by changing the deposition time. The nanoparticle number densities were determined by atomic force microscopy. Time-resolved photoluminescence measurements on these films were carried out as a function of the film density and at different PL wavelengths. The reported results showed photoluminescence properties independent of the film density. Even in the very low density film (∼4*109 particles/cm2) where nanoparticles are completely isolated from each other, the decay kinetics corresponds to a multi-exponential law. This means that exciton migration alone cannot explain the stretched exponential decay. Its origin must be linked to an intrinsic characteristic of the nc-Si particle. In this paper, the experimental results are described in more details and compared to the theoretical predictions available in the frame of the quantum confinement model. Then, the possible origins of the multi-exponential character of the decay dynamics is discussed, and the particular properties of the PL in indirect band-gap semiconductors emphasized.

Hide All
1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).
2. Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).
3. Chen, X., Henderson, B., O'Donnel, K. P., Appl. Phys. Lett. 60, 2672 (1992).
4. Bustarret, E., Mihalcescu, I., Ligeon, M., Romestain, R., Vial, J. C., Madeore, F., J. Lumin. 57, 105 (1993).
5. Pavesi, L., Ceschini, M., Phys. Rev. B 48, 17625 (1993).
6. Mihalcescu, I., Vial, J. C., Romestain, R., J. Appl. Phys. 80, 2402 (1996).
7. Linnros, J., Lalic, N., Galeckas, A., Grivickas, V., J. Appl. Phys. 86, 6128 (1999).
8. Ledoux, G., Guillois, O., Huisken, F., Kohn, B., Paillard, V., Porterat, D., Reynaud, C., Phys. Rev. B 62, 15942 (2000).
9. Priolo, F., Franzo, G., Pacifici, D., Vinciguerra, V., Iacona, F., Irrera, A., J. Appl. Phys. 89, 264 (2001).
10. Amans, D., Guillois, O., Ledoux, G., Porterat, D., Reynaud, C., J. Appl. Phys. 91, 5334 (2002).
11. Huisken, F., Ledoux, G., Guillois, O., Reynaud, C., Adv. Mater. 14, 1861 (2002).
12. Suzuki, K., Bley, G., Neukirch, U., et al., Solid State Commun. 105, 571 (1998).
13. Nishikawa, N., Miyake, Y., Watanabe, E., et al., J. Non-Cryst. Solids 222, 221 (1997).
14. Lormes, W., Hundhausen, M., Ley, L., J. Non-Cryst. Solids 227–230, 570 (1998).
15. Dulieu, B., Wery, J., Lefrant, S., Bullot, J., Phys. Rev. B 57, 9118 (1998).
16. Kurita, A., Matsumoto, K., Shibata, Y., Kushida, T., J. Lumin. 76, 295 (1998).
17. Kuskovsky, I., Neumark, G. F., Bondarev, V. N., Pikhitsa, P. V., Phys. Rev. Lett. 80, 2413 (1998).
18. Huber, D. L., J. Lumin. 86, 95 (2000);
Garcia-Adeva, J., Huber, D. L., J. Lumin. 92, 65 (2000).
19. Chen, R., J. Lumin. 102–103, 510 (2003).
20. Heitmann, J., Müller, F., Xi, L., Zacharias, M., Kovalev, D., Eichhorn, F., Phys. Rev. B 69, 195309 (2004).
21. Mihalcescu, I., Vial, J. C., Romestain, R., Phys. Rev. Lett. 80, 3392 (1998).
22. Suemoto, T., Tanaka, K. and Nakajima, A., J. Phys. Soc. Jpn. 63, 190 (1994).
23. Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 48, 11024 (1993).
24. Hybertsen, M. S., Phys. Rev. Lett. 72, 1514 (1994)
25. Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 64, 193402 (2001).
26. Allan, G., Delerue, C., and Niquet, Y. M., Phys. Rev. B 63, 205301 (2001)
27. Ehbrecht, M., Huisken, F., Phys. Rev. B 59, 2975 (1999).
28. Guillois, O., Herlin-Boime, N., Reynaud, C., Ledoux, G., Huisken, F., J. Appl. Phys. 95, 3677 (2004)
29. Ledoux, G., Gong, J., Huisken, F., Guillois, O., Reynaud, C., Appl. Phys. Lett. 80, 4834 (2002).
30. Hofmeister, H., Huisken, F., Kohn, B., Eur. Phys. J. D 9, 137 (1999).
31. Delerue, C. and Lannoo, M., Nanostructures: theory and modeling, Series Nanosciences and nanotechnology, Springer-Verlag Berlin Heidelberg New-York (2004)
32. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. and Klimov, V. I., Phys. Rev. Lett. 89, 186802 (2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed